Thromb Haemost 1999; 82(05): 1406-1411
DOI: 10.1055/s-0037-1614845
Rapid Communications
Schattauer GmbH

Contribution of the -455G/A Polymorphism at the β-fibrinogen Gene to Erythrocyte Aggregation in Patients with Coronary Artery Disease

Xiaoduan Weng
1   From Laboratory of Biomedical Engineering, Clinical Research Institute of Montréal, Québec, Canada
,
Guy Cloutier
1   From Laboratory of Biomedical Engineering, Clinical Research Institute of Montréal, Québec, Canada
3   Department of Medicine, Faculty of Medicine, University of Montréal, Canada
,
Jacques Genest Jr.
2   Laboratory of Cardiovascular Genetics, Clinical Research Institute of Montréal, Québec, Canada
3   Department of Medicine, Faculty of Medicine, University of Montréal, Canada
› Author Affiliations
Further Information

Publication History

Received 03 November 1998

Accepted after revision 21 May 1999

Publication Date:
09 December 2017 (online)

Summary

Background. A high level of red blood cell (RBC) aggregation has been consistently found in patients with coronary artery disease (CAD) in case-control studies. Plasma fibrinogen has been shown to promote RBC aggregability. The purpose of this study was to investigate the influence of the genetic variability of the β-fibrinogen gene on RBC aggregation in patients with CAD. Methods and Results. The genotype of the β-fibrinogen gene locus was determined by polymerase chain reaction using the restriction enzyme HaeIII for a G to A substitution at position -455 upstream from the transcriptional start site in 135 French Canadians with premature CAD (age: 51 ± 7 years). Indices measuring the RBC aggregation kinetics (S10) and shear resistance of the aggregates (γS) were obtained by laser reflectometry. Patients were separated into groups by using the medians of S10 and γS. Using χ2 analyses, the distribution of the -455GG, -455GA, and -455AA genotypes in the groups with high levels of S10 (0.43, 0.49, and 0.08) and γS (0.45, 0.49, and 0.06) were found to be significantly distinct from those in the groups with low levels of S10 (0.67, 0.27, and 0.06; p <0.05) and γS (0.70, 0.23, and 0.07; p <0.01). High levels of RBC aggregation were closely associated with the rare -455A allele. Multivariate linear regression analyses showed that S10 was positively correlated with the linear combination of the fibrinogen concentration, age, and the -455G/A genotype (adjusted r = 0.63, p <0.0001). Fibrinogen and age were positive determinants, and HDL-cholesterol was a negative predictor of γS (adjusted r = 0.51, p <0.0001). Conclusion. These findings support the hypothesis that RBC hyperaggregation in premature CAD may be associated with the β-fibrinogen -455G/A polymorphism. This association may be explained by a change in the concentration and/or the functional properties of the fibrinogen protein.

 
  • References

  • 1 Ruhenstroth-Bauer G, Mössmer G, Ottl J, Koenig-Erich S, Heinemann G. Highly significant negative correlations between erythrocyte aggregation value and serum concentration of high density lipoprotein cholesterol in a sample from a normal population and in patients with coronary heart disease. Eur J Clin Invest 1987; 17: 275-9.
  • 2 Hahn R, Müller-Seydlitz PM, Jöckel KH, Hubert H, Heimburg P. Viscoelasticity and red blood cell aggregation in patients with coronary heart disease. Angiology 1989; 40: 914-20.
  • 3 Neumann FJ, Tillmanns H, Roebruck P, Zimmermann R, Haupt HM, Kübler W. Haemorheological abnormalities in unstable angina pectoris: A relation independent of risk factor profile and angiographic severity. Br Heart J 1989; 62: 421-8.
  • 4 Neumann FJ, Katus HA, Hoberg E, Roebruck P, Braun M, Haupt HM, Tillmanns H, Kübler W. Increased plasma viscosity and erythrocyte aggregation: Indicators of an unfavourable clinical outcome in patients with unstable angina pectoris. Br Heart J 1991; 66: 425-30.
  • 5 Demiroglu H, Barista I, Dündar S. Erythrocyte aggregability in patients with coronary heart disease. Clinical Hemorheology 1996; 16 (03) 313-7.
  • 6 Chien S. Blood rheology and its relation to flow resistance and transcapillary exchange, with special reference to shock. Adv Microcirc 1969; 2: 89-103.
  • 7 Lipowsky HH, Kovalcheck S, Zweifach BW. The distribution of blood rheological parameters in the microvasculature of cat mesentery. Circ Res 1978; 43 (05) 738-49.
  • 8 Lowe GDO, Forbes CD, Lowe GDO. editor. Clinical blood rheology. 1 ed.. Boca Raton: CRC Press Inc; 1988. 13 Rheology of cardiovascular disease. 113-40.
  • 9 Soutani M, Suzuki Y, Tateishi N, Maeda N. Quantitative evaluation of flow dynamics of erythrocytes in microvessels: influence of erythrocyte aggregation. Am J Physiol 1995; 268: H1959-H1965.
  • 10 Dupuy-Fons C, Brun JF, Pellerin F, Laborde JC, Bardet L, Orsetti A, Janbon C. Relationships between blood rheology and transcutaneous oxygen pressure in peripheral occlusive arterial disease. Clinical Hemorheology 1995; 15 (02) 191-9.
  • 11 Mchedlishvili G, Shakarishvili R, Aloeva M, Momtselidze N. Elaborated - “Georgian index” of erythrocyte aggregability characterizing the microrheological disorders associated with brain infarct. Clinical Hemorheology 1995; 15 (05) 783-93.
  • 12 Mchedlishvili G, Tsinamdzvrishvili B, Beritashvili N, Gobejishvili L, Ilencko V. New evidence for involvement of blood rheological disorders in rise of peripheral resistance in essential hypertension. Clinical Hemorheology & Microcirculation 1997; 17: 31-9.
  • 13 Cabel M, Meiselman HJ, Popel AS, Johnson PC. Contribution of red blood cell aggregation to venous vascular resistance in skeletal muscle. Am J Physiol 1997; 272: H1020-H1032.
  • 14 Demiroglu H. The importance of erythrocyte aggregation in blood rheology: Considerations on the pathophysiology of thrombotic disorders. Blood 1997; 89 (11) 4236.
  • 15 Tanahashi N, Tomita M, Kobari M, Takeda H, Yokoyama M, Takao M, Fukuuchi Y. Platelet activation and erythrocyte aggregation rate in patients with cerebral infarction. Clinical Hemorheology 1996; 16 (04) 497-505.
  • 16 Goldsmith HL, Turitto VT. Rheological aspects of thrombosis and haemostasis: Basic principles and applications. Thromb Haemost 1986; 55 (03) 415-35.
  • 17 Pearson MJ, Lipowsky HH. Red cell aggregation induced leukocyte margination. [Abstract] Annals Biomed Eng 1998; 26 (Suppl. 01) S30.
  • 18 Rampling MW, Whittingstall P, Linderkamp O. The effects of fibrinogen and its plasmin degradation products on the rheology of erythrocyte suspensions. Clinical Hemorheology 1984; 4 (06) 533-43.
  • 19 Maeda N, Seike M, Kume S, Takaku T, Shiga T. Fibrinogen-induced erythrocyte aggregation: erythrocyte-binding site in the fibrinogen molecule. Biochimica & Biophysica Acta 1987; 904: 81-91.
  • 20 Lowe GDO, Lowe GDO. editor. Topics in preventive cardiology. The impact of fibrinogen on arterial disease. 1 ed.. The Netherlands: Excerpta Medica; 1993: 3-32.
  • 21 Maeda N, Imaizumi K, Sekiya M, Shiga T. Rheological characteristics of desialylated erythrocytes in relation to fibrinogen-induced aggregation. Biochimica & Biophysica Acta 1984; 776: 151-8.
  • 22 Vayá A, Martínez M, Carmena R, Aznar J. Red blood cell aggregation and primary hyperlipoproteinemia. Thrombosis Research 1993; 72: 119-26.
  • 23 Razavian SM, Atger V, Giral PH, Cambillau M, Del-Pino M, Simon AC, Moatti N, Levenson J. Influence of HDL subfractions on erythrocyte aggregation in hypercholesterolemic men. Arteriosclerosis & Thrombosis 1994; 14 (03) 361-6.
  • 24 Khodabandehlou T, Le Dévéhat C, Razavian M. Impaired function of fibrinogen: Consequences on red cell aggregation in diabetes mellitus. Clinical Hemorheology 1996; 16 (03) 303-12.
  • 25 Kwaan HC, Levin M, Sakurai S, Kucuk O, Rooney MW, Lis LJ, Kauffman JW. Digital ischemia and gangrene due to red blood cell aggregation induced by acquired dysfibrinogenemia. J Vasc Surg 1997; 26: 1061-8.
  • 26 Henschen AH. Human Fibrinogen-Structural variants and functional sites. Thromb Haemost 1993; 70 (01) 42-7.
  • 27 Kant JA, Fornace Jr. AJ, Saxe D, Simon MI, McBride OW, Crabtree GR. Evolution and organization of the fibrinogen locus on chromosome 4: Gene duplication accompanied by transposition and inversion. Proc Natl Acad Sci USA 1985; 82: 2344-8.
  • 28 Behague I, Poirier O, Nicaud V, Evans A, Arveiler D, Luc G, Cambou JP, Scarabin PY, Bara L, Green F. et al. β-fibrinogen gene polymorphisms are associated with plasma fibrinogen and coronary artery disease in patients with myocardial infarction. The ECTIM study. Circulation 1996; 93 (03) 440-9.
  • 29 Heinrich J, Funke H, Rust S, Schulte H, Schönfeld R, Köhler E, Assmann G. Impact of polymorphisms in the alpha- and beta-fibrinogen gene on plasma fibrinogen concentrations of coronary heart disease patients. Thrombosis Research 1995; 77: 209-15.
  • 30 Scarabin PY, Bara L, Ricard S, Poirier O, Cambou JP, Arveiler D, Luc G, Evans AE, Samama MM, Cambien F. Genetic variation at the β-fibrinogen locus in relation to plasma fibrinogen concentrations and risk of myocardial infarction. The ECTIM study. Arteriosclerosis & Thrombosis 1993; 13 (06) 886-91.
  • 31 Montgomery HE, Clarkson P, Nwose OM, Mikailidis DP, Jagroop IA, Dollery C, Moult J, Benhizia F, Deanfield J, Jubb M. et al. The acute rise in plasma fibrinogen concentration with exercise is influenced by the G-453-A polymorphism of the β-fibrinogen gene. Arterioscler Thromb Vasc Biol 1996; 16 (03) 386-91.
  • 32 Thomas AE, Green FR, Kelleher CH, Wilkes HC, Brennan PJ, Meade TW, Humphries SE. Variation in the promoter region of the β fibrinogen gene is associated with plasma fibrinogen levels in smokers and non-smokers. Thromb Haemost 1991; 65 (05) 487-90.
  • 33 Tybjaerg-Hansen A, Agerholm-Larsen B, Humphries SE, Abildgaard S, Schnohr P, Nordestgaard BG. A common mutation (G-455-A) in the β-fibrinogen promoter is an independent predictor of plasma fibrinogen, but not of ischemic heart disease. A study of 9,127 individuals based on the Copenhagen city heart study. J Clin Invest 1997; 99: 3034-9.
  • 34 Humphries SE, Cook M, Dubowitz M, Stirling Y, Meade TW. Role of genetic variation at the fibrinogen locus in determination of plasma fibrinogen concentrations. Lancet 1987; June 1452-5.
  • 35 Connor JM, Fowkes FGR, Wood J, Smith FB, Donnan PT, Lowe GDO. Genetic variation at fibrinogen loci and plasma fibrinogen levels. J Med Genet 1992; 29: 480-2.
  • 36 Wang XL, Wang J, McCredie RM, Wilcken DEL. Polymorphisms of factor V, factor VII, and fibrinogen genes: Relevance to severity of coronary artery disease. Arterioscler Thromb Vasc Biol 1997; 17: 246-51.
  • 37 Green F, Hamsten A, Blombäck M, Humphries S. The role of β-fibrinogen genotype in determining plasma fibrinogen levels in young survivors of myocardial infarction and healthy controls from Sweden. Thromb Haemost 1993; 70 (06) 915-20.
  • 38 Carter AM, Stickland MH, Mansfield MW, Grant PJ. β-fibrinogen gene -455 G/A polymorphism and fibrinogen levels: Risk factors for coronary artery disease in subjects with NIDDM. Diabetes Care 1996; 19 (11) 1265-8.
  • 39 Koj A, Mariani G. editor. Pathophysiology of plasma protein metabolism. 1 ed.. New York, London: Plenum Press; 1984. 11 Metabolic studies of acute-phase proteins. 221-48.
  • 40 Humphries SE, Ye S, Talmud P, Bara L, Wilhelmsen L, Tiret L. European atherosclerosis research study: Genotype at the fibrinogen locus (G/-/455-/A β-Gene) is associated with differences in plasma fibrinogen levels in young men and women from different regions in Europe. Evidence for gender-genotype-environnement interaction. Arterioscler Thromb Vasc Biol 1995; 15: 96-104.
  • 41 Barasch E, Benderly M, Graff E, Behar S, Reicher-Reiss H, Caspi A, Pelled B, Reisin L, Roguin N, Goldbourt U. Plasma fibrinogen levels and their correlates in 6457 coronary heart disease patients. The Bezafibrate infarction prevention (BIP) study. Journal of Clinical Epidemiology 1995; 48 (06) 757-65.
  • 42 Benderly M, Graff E, Reicher-Reiss H, Behar S, Brunner D, Goldbourt U. Fibrinogen is a predictor of mortality in coronary heart disease patients. Arterioscler Thromb Vasc Biol 1996; 16 (03) 351-6.
  • 43 Danesh J, Collins R, Appleby P, Peto R. Association of fibrinogen, C-reactive protein, albumin, or leukocyte count with coronary heart disease: meta-analyses of prospective studies. JAMA 1998; 279 (18) 1477-82.
  • 44 Weber M, McNicoll S, Marcil M, Connelly P, Lussier-Cacan S, Davignon J, Latour Y, Genest Jr J. Metabolic factors clustering, lipoprotein cholesterol, apolipoprotein B, lipoprotein (a) and apolipoprotein E phenotypes in premature coronary artery disease in French Canadians. Can J Cardiol 1997; 13 (03) 253-60.
  • 45 Donner M, Siadat M, Stoltz JF. Erythrocyte aggregation: Approach by light scattering determination. Biorheology 1988; 25: 367-75.
  • 46 Houbouyan LL, Delamaire M, Beauchet A, Gentil M, Cauchois G, Taccoen A, Yvert JP, Montredon N, Roudaut MF, Zhao S. et al. Multicenter study of an erythro-aggregometer: quality control and standardization. Clinical Hemorheology & Microcirculation 1997; 17: 299-306.
  • 47 Pignon B, Muller S, Jolly D. et al. Stoltz JF. editor. Hémorhéologie et agrégation érythrocytaire. Éditions Médicales Internationales. Validation d’une méthode d’approche de l’agrégation érythrocytaire par retrodiffusion laser. 1988: 65-74.
  • 48 Thomas A, Lamlum H, Humphries S, Green F. Linkage disequilibrium across the fibrinogen locus as shown by five genetic polymorphisms, G/A-455 (HaeIII), C/T-148 (HindIII/AluI), T/G+1689 (AvaII), and BcII (β-fibrinogen) and TaqI (α-fibrinogen), and their detection by PCR. Human Mutation 1994; 3: 79-81.
  • 49 Pignon B, Jolly D, Potron G, Lartigue B, Vilque JP, Nguyen P, Etienne JC, Stoltz JF. Erythrocyte aggregation – Determination of normal values: Influence of age, sex, hormonal state, oestroprogestative treatment, haematological parameters and cigarette smoking. Nouv Rev Fr Hematol 1994; 36: 431-9.
  • 50 Demiroglu H, Barista I, Dündar S. The effects of age and menopause on erythrocyte aggregation. Thromb Haemost 1997; 77 (02) 404.
  • 51 Weng X, Roederer GO, Beaulieu R, Cloutier G. Contribution of acutephase proteins and cardiovascular risk factors to erythrocyte aggregation in normolipidemic and hyperlipidemic individuals. Thromb Haemost 1998; 80: 903-8.
  • 52 Baumann RE, Henschen AH. Linkage disequilibrium relationships among four polymorphisms within the human fibrinogen gene cluster. Hum Genet 1994; 94: 165-70.
  • 53 Dalmon J, Laurent M, Courtois G. The human b fibrinogen promoter contains a hepatocyte nuclear factor 1- Dependent interleukin-6-responsive element. Mol Cell Biol 1993; 13 (02) 1183-93.
  • 54 Poli V, Cortese R. Interleukin 6 induces a liver-specific nuclear protein that binds to the promoter of acute-phase genes. Proceedings of the National Academy of Sciences of the USA 1989; 86 (21) 8202-6.
  • 55 Lane A, Humphries SE, Green FR. Effect on transcription of two common genetic polymorphisms adjacent to the promoter region of the β-fibrinogen gene. [Abstract] Thromb Haemost 1993; 69: 962.