Thromb Haemost 1999; 81(04): 479-485
DOI: 10.1055/s-0037-1614509
Rapid Communication
Schattauer GmbH

Structural and Functional Basis of Plasminogen Activation by Staphylokinase

L. Jespers
1   From the Center for Transgene Technology and Gene Therapy, Flanders Interuniversity Institute for Biotechnology, Leuven, Belgium
,
S. Vanwetswinkel
1   From the Center for Transgene Technology and Gene Therapy, Flanders Interuniversity Institute for Biotechnology, Leuven, Belgium
,
H. R. Lijnen
2   Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
,
N. Van Herzeele
1   From the Center for Transgene Technology and Gene Therapy, Flanders Interuniversity Institute for Biotechnology, Leuven, Belgium
,
B. Van Hoef
2   Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
,
E. Demarsin
2   Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
,
D. Collen
1   From the Center for Transgene Technology and Gene Therapy, Flanders Interuniversity Institute for Biotechnology, Leuven, Belgium
2   Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
,
M. De Maeyer
1   From the Center for Transgene Technology and Gene Therapy, Flanders Interuniversity Institute for Biotechnology, Leuven, Belgium
› Author Affiliations
Further Information

Publication History

Received 24 November 1998

Accepted after revision 17 December 1998

Publication Date:
09 December 2017 (online)

Summary

Staphylokinase (Sak), a 15.5-kDa bacterial protein, forms a complex with human plasmin, which in turn activates other plasminogen molecules to plasmin. Three recombinant DNA-based approaches, (i) site directed substitution with alanine, (ii) search for proximity relationships at the complex interface, and (iii) active-site accessibility to protease inhibitors have been used to deduce a coherent docking model of the crystal structure of Sak on the homology-based model of micro-plasmin (μPli), the serine protease domain of plasmin. Sak binding on μPli is primarily mediated by two surface-exposed loops, loops 174 and 215, at the rim of the active-site cleft, while the binding epitope of Sak on μPli involves several residues located in the flexible NH2-terminal arm and in the five-stranded mixed β-sheet. Several Sak residues located within the unique μ-helix and the β2 strand do not contribute to the binding epitope but are essential to induce plasminogen activating potential in the Sak:μPli complex. These residues form a topologically distinct activation epitope, which, upon binding of Sak to the catalytic domain of μPli, protrudes into a broad groove near the catalytic triad of μPli, thereby generating a competent binding pocket for micro-plasminogen (μPlg), which buries approximately 2500 Å of the Sak:μPli complex upon binding. This structural and functional model may serve as a template for the design of improved Sak-derived thrombolytic agents. Following the completion and presentation of the present study, the deduced Sak:μPli:μPlg complex was fully confirmed by X-ray crystallography, which further illustrates the power and potential of the present approach.

 
  • References

  • 1 Collen D, Lijnen HR. Fibrinolysis and the Control of Hemostasis. In The Molecular Basis of Blood Diseases. Stamatoyannopoulos G, Nienhuis AW, Majerus PW, Varmus H. eds Philadelphia: W. B: Saunders Co; 1994. p 725-52.
  • 2 Tillett WS, Garner RL. Fibrinolytic activity of hemolytic streptococci. J Exp Med. 1933; 58: 485-502.
  • 3 Milestone H. A factor in normal human blood which participates in streptococcal fibrinolysis. J Immunol 1941; 42: 109-16.
  • 4 Lack CH. Staphylokinase: an activator of plasma protease. Nature 1948; 161: 559-60.
  • 5 Lewis JH, Ferguson JH. A proteolytic enzyme system of the blood. III. Activation of dog serum profibrinolysin by staphylokinase. Am J Physiol 1951; 166: 594-603.
  • 6 Collen D, Lijnen RH. Staphylokinase, a fibrin-specific plasminogen activator with therapeutic potential?. Blood 1994; 84: 680-6.
  • 7 Reddy KNN, Markus G. Mechanism of activation of human plasminogen by streptokinase. Presence of active center in streptokinase-plasminogen complex. J Biol Chem 1972; 247: 1683-91.
  • 8 Summaria L, Wohl RC, Boreisha IG, Robbins KC. A virgin enzyme derived from human plasminogen. Specific cleavage of the arginyl-560-valyl peptide bond in the diisopropoxyphosphinyl virgin enzyme by plasminogen activators. Biochemistry 1982; 21: 2056-9.
  • 9 Rabijns A, De Bondt H, De Ranter C. Three-dimensional structure of staphylokinase, a plasminogen activator with therapeutic potential. Nature Struct Biol 1997; 4: 357-60.
  • 10 Silence K, Hartmann M, Gührs KH, Gase A, Schlott B, Collen D, Lijnen HR. Structure-function relationships in staphylokinase as revealed by “clustered charge to alanine” mutagenesis. J Biol Chem 1995; 270: 27192-8.
  • 11 Schlott B, Gührs KH, Hartmann M, Röcker A, Collen D. NH2-terminal structural motifs in staphylokinase required for plasminogen activation. J Biol Chem 1997; 272: 6067-72.
  • 12 Jespers L, Van Herzeele H, Lijnen HR, Van Hoef B, De Maeyer M, Collen D, Lasters I. Arginine 719 in human plasminogen mediates formation of the staphylokinase:plasmin activator complex. Biochemistry 1998; 37: 6380-6.
  • 13 Lamba D, Bauer M, Huber R, Fischer S, Rudolph R, Kohnert U, Bode W. The 2.3 A crystal structure of the catalytic domain of recombinant two-chain human tissue-type plasminogen activator. J Mol Biol 1996; 258: 117-35.
  • 14 Deutsch DG, Mertz ET. Plasminogen: purification from human plasma by affinity chromatography. Science 1970; 170: 1095-6.
  • 15 Lijnen HR, Van Hoef B, Collen D. Comparative kinetic analysis of the activation of human plasminogen by natural and recombinant single-chain urokinase-type plasminogen activator. Biochim Biophys Acta 1986; 884: 402-8.
  • 16 Lijnen HR, Van Hoef B, Nelles L, Collen D. Plasminogen activation with single-chain urokinase-type plasminogen activator (scu-PA). Studies with active site mutagenized plasminogen (Ser740 to Ala) and plasmin-resistant scu-PA (Lys158 to Glu). J Biol Chem 1990; 265: 5232-6.
  • 17 Silence K, Collen D, Lijnen HR. Interaction between staphylokinase, plasmin(ogen), and alpha 2-antiplasmin. Recycling of staphylokinase after neutralization of the plasmin-staphylokinase complex by alpha 2-antiplas-min. J Biol Chem 1993; 268: 9811-6.
  • 18 Lijnen HR, Lasters I, Verstreken M, Collen D, Jespers L. Screening panels of monoclonal antibodies using phage-displayed antigen. Anal Biochem 1997; 248: 211-5.
  • 19 Claessens M, Van Cutsem E, Lasters I, Wodak S. Modeling the polypeptide backbone with ‘spare parts’ from known protein structures. Protein Eng 1989; 2: 335-45.
  • 20 Desmet J, De Maeyer M, Hazes B, Lasters I. The dead-end elimination theorem and its use in protein side-chain positioning. Nature 1992; 356: 539-42.
  • 21 Huber R, Kukla D, Bode W, Schwager P, Bartels K, Deisenhofer J, Steigemann W. Structure of the complex formed by bovine trypsin and bovine pancreatic trypsin inhibitor. II. Crystallographic refinement at 1.9 A resolution. J Mol Biol 1974; 89: 73-101.
  • 22 Read RJ, Fujinaga M, Sielecki AR, James MNG. Structure of the complex of Streptomyces griseus protease B and the third domain of the turkey ovomucoid inhibitor at 1.8-Å resolution. Biochemistry 1983; 22: 4420-33.
  • 23 Horton RM, Hunt HD, Ho SN, Pullen JK, Pease LR. Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene 1989; 77: 61-8.
  • 24 Collen D, De Cock F, Demarsin E, Jenné S, Lasters I, Laroche Y, Warmer-dam P, Jespers L. Recombinant staphylokinase variants with altered immunoreactivity. III: Species variability of antibody binding patterns. Circulation 1997; 95: 455-62.
  • 25 Jespers L, Jenné S, Lasters I, Collen D. Epitope mapping by negative selection of randomized antigen libraries displayed on filamentous phage. J Mol Biol 1997; 269: 704-18.
  • 26 Marks JD, Hoogenboom HR, Bonnert TP, McCafferty J, Griffiths AD, Winter G. By-passing immunization. Human antibodies from V-gene libraries displayed on phage. J Mol Biol 1991; 222: 581-97.
  • 27 Spraggon G, Phillips C, Nowak UK, Ponting CP, Saunders D, Dobson CM, Stuart DI, Jones EY. The crystal structure of the catalytic domain of human urokinase-type plasminogen activator. Structure 1995; 3: 681-91.
  • 28 Renatus M, Stubbs MT, Huber R, Bringmann P, Donner P, Schleuning WD, Bode W. Catalytic domain structure of vampire bat plasminogen activator: a molecular paradigm for proteolysis without activation cleavage. Biochemistry 1997; 36: 13483-93.
  • 29 Zhang Y, Wisner A, Maroun RC, Choumet V, Xiong Y, Bon C. Trimeresurus stejnegeri snake venom plasminogen activator. Site-directed mutagenesis and molecular modeling. J Biol Chem 1997; 272: 20531-7.
  • 30 Wang X, Lin X, Loy JA, Tang J, Zhang X. Crystal structure of the catalytic domain of human plasmin complexed with streptokinase. Science 1998; 281: 1662-5.
  • 31 Dawson KM, Marshall JM, Raper RH, Gilbert RJ, Ponting CP. Substitution of arginine 719 for glutamic acid in human plasminogen substantially reduces its affinity for streptokinase. Biochemistry 1994; 33: 12042-7.
  • 32 Lijnen HR, De Cock F, Van Hoef B, Schlott B, Collen D. Characterization of the interaction between plasminogen and staphylokinase. Eur J Biochem 1994; 224: 143-9.
  • 33 Shieh HS, Kurumbail RG, Stevens AM, Stegeman RA, Sturman EJ, Pak JY, Wittwer AJ, Palmier MO, Wiegand RC, Holwerda BC, Stallings WC. Three-dimensional structure of human cytomegalovirus protease. Nature 1996; 383: 279-82.
  • 34 Jespers L, Vanwetswinkel S, Lijnen HR, Van Herzeele N, Collen D, De Maeyer M. Interface scanning and 3D model of the staphylokinase:plasmin activator complex. Fibrinol Proteol 1998; 12 (01) Suppl 4 abstract 5
  • 35 Parry MAA, Fernandez-Catalan C, Bergner A, Huber R, Hopfner KP, Schlott B, Gührs KH, Bode W. The ternary microplasmin-staphylokinasemicroplasmin complex is a proteinase-cofactor-substrate complex in action. Nature Struct Biol 1998; 5: 917-23.
  • 36 Nicholls A, Sharp KA, Honig B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins: Struct Funct Genet 1991; 11: 281-96.
  • 37 Koradi R, Billeter M, Wuthrich K. MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graphics 1996; 14: 51-5.
  • 38 Kabsch W, Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 1983; 22: 2577-637.