Thromb Haemost 2003; 89(04): 666-673
DOI: 10.1055/s-0037-1613573
Blood Coagulation, Fibrinolysis and Cellular Haemostasis
Schattauer GmbH

Regulation of the hypoxia-dependent plasminogen activator inhibitor 1 expression by MAP kinases

Thomas Kietzmann
1   Institut für Biochemie und Molekulare Zellbiologie, Georg-August-Universität Göttingen, Göttingen, Germany
,
Kurt Jungermann
1   Institut für Biochemie und Molekulare Zellbiologie, Georg-August-Universität Göttingen, Göttingen, Germany
,
Agnes Görlach
2   Experimentelle Kinderkardiologie, Deutsches Herzzentrum München an der Technischen Universität München, Munich, Germany
› Author Affiliations
Financial support: This study was supported by the Deutsche Forschungsgemeinschaft SFB 402 Teilprojekt A1 and GRK 335 Projekt 6 to TK, by DFG grant GO 709/4-1 to AG.
Further Information

Publication History

Received 31 October 2002

Accepted after revision 10 January 2003

Publication Date:
07 December 2017 (online)

Summary

Mitogen-activated protein kinases (MAPKs) and protein kinase B (PKB) mediate growth and stress signals and have been implicated in the hypoxic response. Under hypoxic conditions, the expression of plasminogen activator inhibitor-1 (PAI-1) is mainly controlled by the hypoxia-inducible factor HIF-1. However, the role of MAPKs and PKB in HIF-1-mediated PAI-1 regulation is not clear.

Treatment with the p38 inhibitor SB203580 and the PI3K inhibitor LY294002, but not with the MEK1 inhibitor PD98059, abrogated hypoxia-dependent PAI-1 induction in HepG2 cells. Consistently, overexpression of PKB or of the p38 upstream kinases MKK6 and MKK3 and of JNK, but not of ERK, enhanced PAI-1 mRNA levels. In MKK3-,MKK6- and PKB-expressing cells luciferase (Luc) activities from a hypoxia-inducible PAI-1-Luc construct or from a HIF-dependent Luc construct and, concomitantly, HIF-1α protein levels were enhanced. These findings indicate that p38- and PKB-dependent signalling pathways contribute to enhanced PAI-1 levels in the hypoxic response.

Theme paper: Part of this paper was originally presented at the joint meetings of the 16th International Congress of the International Society of Fibrinolysis and Proteolysis (ISFP) and the 17th International Fibrinogen Workshop of the International Fibrinogen Research Society (IFRS) held in Munich, Germany, September, 2002.

 
  • References

  • 1 Lijnen HR, Collen D. Mechanisms of plasminogen activation by mammalian plasmino-gen activators. Enzyme 1988; 40: 90-6.
  • 2 Kruithof EK, Gudinchet A, Bachmann F. Plasminogen activator inhibitor 1 and plasminogen activator inhibitor 2 in various disease states. Thromb Haemost 1988; 59: 7-12.
  • 3 Loskutoff DJ, Quigley JP. PAI-1, fibrosis, and the elusive provisional fibrin matrix. J Clin Invest 2000; 106: 1441-3.
  • 4 Carmeliet P, Stassen JM, Schoonjans L, Ream B, van-den-Oord JJ, De-Mol M. et al. Plasminogen activator inhibitor-1 gene-deficient mice. II. Effects on hemostasis, thrombosis, and thrombolysis. J Clin Invest 1993; 92: 2756-60.
  • 5 Eitzman DT, McCoy RD, Zheng X, Fay WP, Shen T, Ginsburg D. et al. Bleomycin-induced pulmonary fibrosis in transgenic mice that either lack or overexpress the murine plasminogen activator inhibitor-1 gene. J Clin Invest 1996; 97: 232-7.
  • 6 Reuning U, Magdolen V, Wilhelm O, Fischer K, Lutz V, Graeff H. et al. Multifunctional potential of the plasminogen activation system in tumor invasion and metastasis (review. Int J Oncol 1998; 13: 893-906.
  • 7 Andreasen PA, Egelund R, Petersen HH. The plasminogen activation system in tumor growth, invasion, and metastasis. Cell Mol Life Sci 2000; 57: 25-40.
  • 8 Huber K. Plasminogen activator inhibitor type-1 (part one: basic mechanisms, regulation, and role for thromboembolic disease. J Thromb Thrombolysis 2001; 11: 183-93.
  • 9 Ridley AJ. Rho family proteins: coordinating cell responses. Trends Cell Biol 2001; 11: 471-4.
  • 10 Gomez N, Cohen P. Dissection of the protein kinase cascade by which nerve growth factor activates MAP kinases. Nature 1991; 353: 170-3.
  • 11 Davis RJ. Signal transduction by the c-Jun N-terminal kinase. Biochem Soc Symp 1999; 64: 1-12.
  • 12 Nebreda AR, Porras A. p38 MAP kinases: beyond the stress response. Trends Biochem Sci 2000; 25: 257-60.
  • 13 Kyriakis J, Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev 2001; 81: 807-69.
  • 14 Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PR, Reese CB. et al. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol 1997; 7: 261-9.
  • 15 Richard DE, Berra E, Gothie E, Roux D, Pouyssegur J. p42/p44 mitogen-activated protein kinases phosphorylate hypoxia-inducible factor 1alpha (HIF-1alpha and enhance the transcriptional activity of HIF-1. J Biol Chem 1999; 274: 32631-7.
  • 16 Zundel W, Swiersz LM, Giaccia A. Caveolin 1-mediated regulation of receptor tyrosine kinase-associated phosphatidylinositol 3-kinase activity by ceramide. Mol Cell Biol 2000; 20: 1507-14.
  • 17 Kietzmann T, Roth U, Jungermann K. Induction of the plasminogen activator inhibitor-1 gene expression by mild hypoxia via a hypoxia response element binding the hypoxia inducible factor-1 in rat hepatocytes. Blood 1999; 94: 4177-85.
  • 18 Bunn HF, Poyton RO. Oxygen sensing and molecular adaptation to hypoxia. Physiol Rev 1996; 76: 839-85.
  • 19 Semenza GL. Hypoxia, clonal selection, and the role of HIF-1 in tumor progression. Crit Rev Biochem Mol Biol 2000; 35: 71-103.
  • 20 Wenger RH. Cellular adaptation to hypoxia: O2-sensing protein hydroxylases, hypoxia-inducible transcription factors, and O2-regulated gene expression. FASEB J 2002; 16: 1151-62.
  • 21 Immenschuh S, Hinke V, Ohlmann A, Gifhorn-Katz S, Katz N, Jungermann K. et al. Transcriptional activation of the haem oxygenase-1 gene by cGMP via a cAMP response element/activator protein-1 element in primary cultures of rat hepatocytes. Biochem J 1998; 334: 141-6.
  • 22 Bosma PJ, van-den-Berg EA, Kooistra T, Siemieniak DR, Slightom JL. Human plasminogen activator inhibitor-1 gene. Promoter and structural gene nucleotide sequences. J Biol Chem 1988; 263: 9129-41.
  • 23 Gorlach A, Diebold I, Schini-Kerth VB, Berchner-Pfannschmidt U, Roth U, Brandes RP. et al. Thrombin activates the hypoxia-inducible factor-1 signaling pathway in vascular smooth muscle cells: Role of the p22(phox-containing NADPH oxidase. Circ Res 2001; 89: 47-54.
  • 24 Kietzmann T, Cornesse Y, Brechtel K, Modaressi S, Jungermann K. Perivenous expression of the mRNA of the three hypoxia-inducible factor alpha-subunits, HIF1alpha, HIF2alpha and HIF3alpha, in rat liver. Biochem J 2001; 354: 531-7.
  • 25 Whitmarsh AJ, Yang SH, Su MS, Sharrocks AD, Davis RJ. Role of p38 and JNK mitogen-activated protein kinases in the activation of ternary complex factors. Mol Cell Biol 1997; 17: 2360-71.
  • 26 Whitmarsh AJ, Shore P, Sharrocks AD, Davis RJ. Integration of MAP kinase signal transduction pathways at the serum response element. Science 1995; 269: 403-7.
  • 27 Derijard B, Hibi M, Wu IH, Barrett T, Su B, Deng T. et al. JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell 1994; 76: 1025-37.
  • 28 Derijard B, Hibi M, Wu IH, Barrett T, Su B, Deng T. et al. JNK 1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell 1994; 76: 1025-37.
  • 29 Han J, Lee JD, Jiang Y, Li Z, Feng L, Ulevitch RJ. Characterization of the structure and function of a novel MAP kinase kinase (MKK6. J Biol Chem 1996; 271: 2886-91.
  • 30 Franke TF, Yang I S, Chan TO, Datta K, Kazlauskas A, Morrison DK. et al. The protein kinase encoded by the Akt proto-oncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase. Cell 1995; 81: 727-36.
  • 31 Kietzmann T, Roth U, Freimann S, Jungermann K. Arterial oxygen partial pressures reduce the insulin-dependent induction of the perivenously located glucokinase in rat hepatocyte cultures: mimicry of arterial oxygen pressures by H2O2. Biochem J 1997; 321: 17-20.
  • 32 Zeheb R, Rafferty UM, Rodriguez MA, Andreasen P, Gelehrter TD. Immunoaffinity purification of HTC rat hepatoma cell plasminogen activator-inhibitor-1. Thromb Haemost 1987; 58: 1017-23.
  • 33 Meier R, Thelen M, Hemmings BA. Inactivation and dephosphorylation of protein kinase Balpha (PKBalpha promoted by hyper-osmotic stress. EMBO J 1998; 17: 7294-303.
  • 34 Fink T, Kazlauskas A, Poellinger L, Ebbesen P, Zachar V. Identification of a tightly regulated hypoxia-response element in the promoter of human plasminogen activator inhibitor-1. Blood 2002; 99: 2077-83.
  • 35 Semenza GL. HIF-1: mediator of physiological and pathophysiological responses to hypoxia. J Appl Physiol 2000; 88: 1474-80.
  • 36 Jaakkola P, Mole DR, Tian YM, Wilson I M, Gielbert J, Gaskell SJ. et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 2001; 292: 468-72.
  • 37 Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M. et al. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 2001; 292: 464-8.
  • 38 Lando D, Peet DJ, Whelan DA, Gorman J, Whitelaw ML. Aspargine hydroxylation of the HIF transactivation domain a hypoxic switch. Science 2002; 295: 858-61.
  • 39 Arsham AM, Plas DR, Thompson CB, Simon MC. Phosphatidylinositol 3-kinase/Akt signaling is neither required for hypoxic stabilization of HIF-1 alpha nor sufficient for HIF-1-dependent target gene transcription. J Biol Chem 2002; 277: 15162-70.
  • 40 Alvares-Tejado M, Alfranca A, Aragones J, Vara A, Landazuri MO, del Peso L. Lack of Evidence for the Involvement of the Phosphoinositide 3-Kinase/Akt Pathway in the Activation of Hypoxia-inducible Factors by Low Oxygen Tension. J Biol Chem 2002; 277: 13508-17.
  • 41 Richard DE, Berra E, Pouyssegur J. Nonhypoxic pathway mediates the induction of hypoxia-inducible factor 1alpha in vascular smooth muscle cells. J Biol Chem 2000; 275: 26765-71.
  • 42 Sodhi A, Montaner S, Miyazaki H, Gutkind JS. MAPK and Akt act cooperatively but independently on hypoxia inducible factor-1alpha in rasV12 upregulation of VEGF. Biochem Biophys Res Commun 2001; 287: 292-300.
  • 43 Stiehl DP, Jelkmann W, Wenger RH, Hellwig-Burgel T. Normoxic induction of the hypoxia-inducible factor 1alpha by insulin and interleukin-1beta involves the phosphatidylinositol 3-kinase pathway. FEBS Lett 2002; 512: 157-62.
  • 44 Descheemaeker KA, Wyns S, Nelles L, Auwerx J, Ny T, Collen D. Interaction of AP-1-, AP-2-, and Sp1-like proteins with two distinct sites in the upstream regulatory region of the plasminogen activator inhibitor-1 gene mediates the phorbol 12-myristate 13-acetate response. J Biol Chem 1992; 267: 15086-91.
  • 45 Zelzer E, Levy Y, Kahana C, Shilo BZ, Rubinstein M, Cohen B. Insulin induces transcription of target genes through the hypoxia-inducible factor HIF-1alpha/ARNT. EMBO J 1998; 17: 5085-94.
  • 46 Feldser D, Agani F, Iyer NV, Pak B, Ferreira G, Semenza GL. Reciprocal positive regulation of hypoxia-inducible factor 1alpha and insulin-like growth factor 2. Cancer Res 1999; 59: 3915-8.
  • 47 Hellwig-Burgel T, Rutkowski K, Metzen E, Fandrey J, Jelkmann W. Interleukin-1beta and tumor necrosis factor-alpha stimulate DNA binding of hypoxia-inducible factor-1. Blood 1999; 94: 1561-7.
  • 48 Dennler S, Itoh S, Vivien D, Ten-Dijke P, Huet S, Gauthier JM. Direct binding of Smad3 and Smad4 to critical TGF beta-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. EMBO J 1998; 17: 3091-100.
  • 49 Yu L, Hebert MC, Zhang YE. TGF-beta receptor-activated p38 MAP kinase mediates Smad-independent TGF-beta responses. EMBO J 2002; 21: 3749-59.
  • 50 Mucsi I, Skorecki KL, Goldberg HJ. Extracellular signal-regulated kinase and the small GTP-binding protein, Rac, contribute to the effects of transforming growth factor-beta1 on gene expression. J Biol Chem 1996; 271: 16567-72.
  • 51 Takahashi H, Uno S, Watanabe Y, Arakawa K, Nakagawa S. Expression of nerve growth factor-induced type 1 plasminogen activator inhibitor (PAI-1) mRNA is inhibited by genistein and wortmannin. Neuroreport 2000; 11: 1111-5.
  • 52 Banfi C, Eriksson P, Giandomenico G, Mussoni L, Sironi L, Hamsten A. et al. Transcriptional regulation of plasminogen activator inhibitor type 1 gene by insulin: insights into the signaling pathway. Diabetes 2001; 50: 1522-30.
  • 53 Bastard JP, Pieroni L, Hainque B. Relationship between plasma plasminogen activator inhibitor 1 and insulin resistance. Diabetes Metab Res Rev 2000; 16: 192-201.
  • 54 Kohler HP, Grant PJ. Plasminogen-activator inhibitor type 1 and coronary artery disease. N Engl J Med 2000; 342: 1792-801.