Thromb Haemost 2003; 89(06): 1072-1080
DOI: 10.1055/s-0037-1613410
Vascular Development and Vessel Remodelling
Schattauer GmbH

Recombinant human tissue plasminogen activator protects the basal lamina in experimental focal cerebral ischemia

Dorothe Burggraf
1   Department of Neurology, Ludwig-Maximilians-University Munich, Klinikum Großhadern, Munich, Germany
,
Helge K. Martens
1   Department of Neurology, Ludwig-Maximilians-University Munich, Klinikum Großhadern, Munich, Germany
,
Gabriele Jäger
1   Department of Neurology, Ludwig-Maximilians-University Munich, Klinikum Großhadern, Munich, Germany
,
Gerhard F. Hamann
1   Department of Neurology, Ludwig-Maximilians-University Munich, Klinikum Großhadern, Munich, Germany
› Institutsangaben
Financial support: Support for this study was provided by the Kompetenznetzwerk Schlaganfall of the BMBF (Project Number B3).
Weitere Informationen

Publikationsverlauf

Received 16. September 2002

Accepted after revision 15. Februar 2003

Publikationsdatum:
08. Dezember 2017 (online)

Summary

While recombinant tissue plasminogen activator (rt-PA) is successfully used in human ischemic stroke, it may also cause hemorrhagic complications. Animal experiments have shown that hemorrhages are related to microvascular basal lamina damage. We investigated the effects of different doses of rt-PA on the brain microvasculature. Experimental cerebral ischemia in rats was induced for 3 h and followed by 24 h reperfusion (suture model). Each group of rats (n = 6) received either treatment (0.9, 9, or 18 mg rt-PA/kg body weight) or saline (control group) at the end of ischemia. The loss of microvascular basal lamina antigen collagen type IV was measured by Western blot of the ischemic and non-ischemic basal ganglia and cortex. Compared with the contralateral non-ischemic area, collagen type IV was significantly reduced in the ischemic area: (basal ganglia/cortex) 43% +/- 9% / 64% +/- 4 %. Low/moderate doses of rt-PA had a protective effect: 0.9 mg 79% +/- 3% / 89% +/-6%, 9 mg 72% +/- 9%/ 81% +/- 12% (p < 0.05). Higher doses of rt-PA (18 mg) had a similar effect as seen in untreated controls: 57% +/- 11% / 59% +/- 9% (p < 0.05, Anova). MMP-9 and MMP-2, measured by gelatine zymography, steadily increased over higher doses of rt-PA: MMP-9 (basal ganglia/cortex): control 115% +/- 4% / 123% +/- 3% compared with 18 mg rt-PA 146% +/- 5%/ 162% +/- 6% (p < 0.05) and MMP-2: control 109% +/-4%/ 116% +/- 5% and 18 mg rt-PA 222% +/- 15%/ 252% +/- 2% (p < 0.05). Low to moderate doses of rt-PA protect the microvascular basal lamina, whereas high doses of rt-PA have the opposite effect, probably due to increased coactivation of MMP-2 and MMP-9.

 
  • References

  • 1 Hamann GF, Okada Y, del Zoppo GJ. Hemorrhagic transformation and microvascular integrity during focal cerebral ischemia/ reperfusion. J Cereb Blood Flow Metab 1996; 16: 1373-8.
  • 2 Yurchenco PD, Schittny JC. Molecular architecture of basement membranes. FASEB J 1990; 4: 1577-90.
  • 3 Hamann GF, Okada Y, Fitridge R, del Zoppo GJ. Microvascular basal lamina antigens disappear during cerebral ischemia and reperfusion. Stroke 1995; 26: 2120-6.
  • 4 Okada Y, Copeland BR, Mori E, Koziol JA, del Zoppo GJ. P-selectin and intercellular adhesion molecule-1 expression after focal brain ischemia and reperfusion. Stroke 1994; 25: 202-11.
  • 5 del Zoppo GJ, von Kummer R, Hamann GF. Ischaemic damage of brain microvessels: inherent risks for thrombolytic treatment in stroke. J Neurol Neurosurg Psychiatry 1998; 65: 1-9.
  • 6 Rosenberg GA, Navratil M, Barone F, Feuerstein G. Proteolytic cascade enzymes increase in focal cerebral ischemia in rat. J Cereb Blood Flow Metab 1996; 16: 360-6.
  • 7 Gasche Y, Copin JC, Sugawara T, Fuijmura M, Chan PH. Matrix metalloproteinase inhibition prevents oxidative stress-associated blood-brain barrier disruption after transient focal cerebral ischemia. J Cereb Blood Flow Metab 2001; 21 (12) 1393-400.
  • 8 The national institute of neurological disorders and stroke rt-PA Stroke Study Group. N Engl J Med 1995; 333: 1581-7.
  • 9 Larrue V, von Kummer R, del Zoppo G, Bluhmki E. Hemorrhagic transformation in acute ischemic stroke. Potential contributing factors in the European Cooperative Acute Stroke Study. Stroke 1997; 28: 957-60.
  • 10 Zhang RL, Zhang ZG, Chopp M. Increased therapeutic efficacy with rt-PA and anti-CD18 antibody treatment of stroke in the rat. Neurology 1999; 52: 273-9.
  • 11 Zivin JA. Factors determining the therapeutic window for stroke. Neurology 1998; 50: 599-603.
  • 12 Lyden PD, Grotta JC, Levine SR, Marler JR, Frankel MR, Brott TG. Intravenous thrombolysis for acute stroke. Neurology 1997; 49: 14-20.
  • 13 Vivien D, Buisson A. Serine protease inhibitors: novel therapeutic targets for stroke?. J Cereb Blood Flow Metab 2000; 20: 755-64.
  • 14 Karges HE, Funk KA, Ronneberger H. Activity of coagulation and fibrinolysis parameters in animals. Arzneimittelforschung 1994; 44 (06) 793-7.
  • 15 Longa EZ, Weinstein PR, Carlson S, Cummins R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 1989; 20: 84-91.
  • 16 Hamann GF, Liebetrau M, Martens H. et al. Microvascular basal lamina injury after experimental focal cerebral ischemia and reperfusion in the rat. J Cereb Blood Flow Metab 2002; 22: 526-33.
  • 17 Paxinos G, and Watson C. eds The rat brain. Academic press, 4th edition. San Diego; London, Boston: 1998
  • 18 Burggraf D, Lottspeich F. The further construction of the two-dimensional database of common human proteins. Electrophoresis 1995; 16: 831-40.
  • 19 Pfefferkorn T, Staufer B, Liebetrau M, Bultemeier G, Vosko MR, Zimmermann C, Hamann GF. Plasminogen activation in focal cerebral ischemia and reperfusion. J Cereb Blood Flow Metab 2000; 20: 337-42.
  • 20 del Zoppo GJ, Hallenbeck JM. Advances in the vascular pathophysiology of ischemic stroke. Thromb Res 2000; 98: 73-81.
  • 21 Hamann GF, del Zoppo GJ, von Kummer R. Hemorrhagic transformation of cerebral infarction – possible mechanisms. Thromb Haemost 1999; 82 Suppl 92-4.
  • 22 Abrahamson DR. Recent studies on the structure and pathology of basement membranes. J Pathol 1986; 149: 257-78.
  • 23 Risau W, Esser S, Engelhardt B. Differentiation of blood-brain barrier endothelial cells. Pathol Biol 1998; 46: 171-5.
  • 24 Petty MA, Wettstein JG. Elements of cerebral microvascular ischaemia. Brain Res Brain Res Rev. 2001; 36: 23-34.
  • 25 Lijnen HR, Collen D. Endothelium in hemo-stasis and thrombosis. Prog Cardiovasc Dis 1997; 9: 343-50.
  • 26 Lijnen HR, Van Hoef B, Lupu F, Moons L, Carmeliet P, Collen D. Function of the plasminogen /plasmin and matrix metalloproteinase systems after vascular injury in mice with targeted inactivation of fibrinolytic system genes. Arterioscler Thromb Vasc Biol 1998; 18: 1035-45.
  • 27 del Zoppo GJ. Microvascular changes during cerebral ischemia and reperfusion. Cerebrovasc Brain Metab Rev 1994; 6: 47-96.
  • 28 Wang YF, Tsirka SE, Strickland S, Stieg PE, Soriano SG, Lipton SA. Tissue plasminogen activator (tPA) increases neuronal damage after focal cerebral ischemia in wild-type and tPA-deficient mice. Nat Med 1998; 4: 228-31.
  • 29 Nagai N, Vanlinthout I, Collen D. Comparative effects of tissue plasminogen activator, streptokinase, and staphylokinase on cerebral ischemic infarction and pulmonary clot lysis in hamster models. Circulation 1999; 100: 2541-6.
  • 30 Liotta LA, Goldfarb RH, Terranova VP. Cleavage of laminin by thrombin and plasmin: alpha thrombin selectively cleaves the beta chain of laminin. Thromb Res 1981; 21: 663-73.
  • 31 Meng W, Wang X, Asahi M. et al. Effects of tissue type plasminogen activator in embolic versus mechanical models of focal cerebral ischemia in rats. J Cereb Blood Flow Metab 1999; 19: 1316-21.
  • 32 Klein GM, Li H, Sun P, Buchan AM. Tissue plasminogen activator does not increase neuronal damage in rat models of global and focal ischemia. Neurology 1999; 52: 1381-4.
  • 33 Birkedal-Hansen H. Role of cytokines and inflammatory mediators in tissue destruction. J Periodont Res 1993; 28: 500-10.
  • 34 Rosenberg GA. Ischemic brain edema. Prog Cardiovasc Dis 1999; 42: 209-16.
  • 35 Rosenberg GA, Navratil M. Metalloproteinase inhibition blocks edema in intracerebral hemorrhage in the rat. Neurology 1997; 48: 921-6.
  • 36 Lukes A, Mun-Bryce S, Lukes M, Rosenberg GA. Extracellular matrix degradation by met-alloproteinases and central nervous system diseases. Mol Neurobiol 1999; 19: 267-84.
  • 37 Sumii T, Lo EH. Involvement of matrix metal-loproteinase in thrombolysis-associated hemorrhagic transformation after embolic focal ischemia in rats. Stroke 2002; 33: 831-6.
  • 38 Romanic AM, White RF, Arleth AJ, Ohlstein EH, Barone FC. Matrix metalloproteinase expression increases after cerebral focal ischemia in rats: inhibition of matrix metalloproteinase-9 reduces infarct size. Stroke 1998; 29: 1020-30.
  • 39 Sato H, Takino T, Okada Y. et al. A matrix metalloproteinase expressed on the surface of invasive tumour cells. Nature 1994; 370: 61-5.
  • 40 Fridman R, Toth M, Pena D, Mobashery S. Activation of progelatinase B (MMP-9) by gelatinase A (MMP-2). Cancer Res 1995; 55: 2548-55.
  • 41 Rosenberg GA, Cunningham LA, Wallace J. et al. Immunohistochemistry of matrix metalloproteinases in reperfusion injury to rat brain: activation of MMP-9 linked to stromelysin-1 and microglia in cell cultures. Brain Res 2001; 893: 104-12.
  • 42 Rosenberg GA, Estrada EY, Dencoff JE. Matrix metalloproteinases and TIMPs are associated with blood-brain barrier opening after reperfusion in rat brain. Stroke 1998; 29: 2189-95.
  • 43 Fujimura M, Gasche Y, Morita-Fujimura Y, Massengale J, Kawase M, Chan PH. Early appearance of activated matrix metalloproteinase-9 and blood-brain barrier disruption in mice after focal cerebral ischemia and reperfusion. Brain Res 1999; 842: 92-100.