Subscribe to RSS
DOI: 10.1055/s-0037-1613084
New Aspects in Thrombosis Research: Possible Role of Mast Cells as Profibrinolytic and Antithrombotic Cells
Supported by: Fonds zur Förderung der Wissenschaftlichen Forschung in Österreich FWF, grant F-005/01Publication History
Received
09 July 2001
Accepted after resubmission
28 November 2001
Publication Date:
11 December 2017 (online)
Summary
Venous thromboembolism represents a significant cause of morbidity worldwide. The factors that underly thrombophilia are manifold. The concept of Virchow defines the well known triad of stasis, humoral factors, and pathologies of the vascular wall. In the current article, an additional factor, the “accumulation of repair cells” is discussed. This novel concept highlights the mast cell that accumulates around thrombosed vessels and provides a number of important repair molecules including heparin, profibrinolytic tPA, and fibrinogenolytic β-tryptase. Thus, mast cell recruitment and activation may result in local thrombolysis and prevention of coagulation. In line with this concept, mast cell-deficient mice are more susceptible to lethal thrombogenic stimuli compared to normal mice. The factors (cytokines) that trigger mast cell accumulation and release of repair molecules have also been identified – the most important one appears to be stem cell factor (SCF). All in all, our novel concept suggests that the patho-physiology of thrombosis may involve a “physiologic” cell that provides the same repair molecules that are used for treatment of thrombotic disorders by the physician. Whether an altered availability of components of this cellular repair system can predispose for thrombophilia remains to be determined.
-
References
- 1 Ratnoff OD. Thrombosis and the hypercoagulable state. Circulation 1984; 70: 72-6.
- 2 Blann AD, Lip GY. Virchow’s triad revisited: the importance of soluble coagulation factors, the endothelium, and platelets. Thromb Res 2001; 101: 321-7.
- 3 Galli SJ. Biology of disease: New insights into “the riddle of the mast cells”: microenvironmental regulation of mast cell development and phenotypic heterogeneity. Lab Invest 1990; 62: 5-33.
- 4 Schwartz LB. The mast cell. In: Kaplan AP. (ed) Allergy. volume 1. Edinburgh: Churchill Livingstone; 1985: 53-92.
- 5 Lewis RA, Austen KF. Mediation of homeostasis and inflammation by leukotrienes and other mast cell dependent compounds. Nature 1981; 293: 103-8.
- 6 Valent P, Sillaber C, Baghestanian M, Bankl HC, Kiener HP, Lechner K, Binder BR. What have mast cells to do with edema formation, the consecutive repair, and fibrinolysis?. Int Arch Allergy Immunol 1998; 115: 2-8.
- 7 Valent P, Sillaber C, Bettelheim P. The growth and differentiation of mast cells. Prog Growth Factor Res 1991; 03: 27-41.
- 8 Bankl HC, Großschmidt K, Pikula B, Bankl H, Lechner K, Valent P. Mast cells are augmented in deep venous thrombosis and express a profibrinolytic phenotype. Human Pathol 1999; 30: 188-94.
- 9 Bankl HC, Radaszkiewicz T, Klappacher GW, Glogar D, Sperr WR, Grossschmidt K, Bankl H, Lechner K, Valent P. Increase and redistribution of cardiac mast cells in auricular thrombosis Possible role of kit ligand. Circulation 1995; 91: 275-83.
- 10 Bankl HC, Valent P. Mast cells and mast cell growth factor: possible role in auricular thrombosis. Biomed Rev 1995; 04: 29-32.
- 11 Bankl HC, Radaszkiewicz T, Pikula B, Baghestanian M, Mherabi MR, Bankl H, Lechner K, Valent P. Expression of fibrinolytic antigens in redistributed cardiac mast cells in auricular thrombosis. Human Pathol 1997; 28: 1283-90.
- 12 Kitamura Y, Yokoyama M, Matsuda H, Ohno T, Mori KJ. Spleen colonyforming cell as common precursor for tissue mast cells and granulocytes. Nature 1981; 291: 159-60.
- 13 Agis H, Willheim M, Sperr WR, Wilfing A, Kromer E, Kabrna E, Spanblöchl E, Strobl H, Geissler K, Spittler A, Boltz-Nitulescu G, Lechner K, Valent P. Monocytes do not make mast cells when incubated with recombinant SCF: characterization of the circulating mast cell progenitor as CD34+, c-kit+, Ly-, CD14-, CD17-, colony forming cell. J Immunol 1993; 151: 4221-7.
- 14 Kirshenbaum AS, Goff JP, Kessler SW, Mican JM, Zsebo KM, Metcalfe DD. Effect of IL-3 and stem cell factor on the appearance of human basophils and mast cells from CD34+ pluripotent progenitors. J Immunol 1992; 148: 772-7.
- 15 Valent P. The Riddle of The Mast Cell: c-kit Ligand as Missing Link?. Immunol Today 1994; 15: 111-4.
- 16 Valent P, Spanblöchl E, Sperr WR, Sillaber Ch, Agis H, Zsebo K, Geissler K, Bettelheim P, Lechner K. Induction of differentiation of human mast cells from bone marrow and peripheral blood mononuclear cells by recombinant human stem cell factor (SCF)/kit ligand (KL) in long term culture. Blood 1992; 80: 2237-45.
- 17 Lammie A, Drobnjak M, Gerald W, Saad A, Cote R, Cordon-Cardo C. Expression of c-kit and kit ligand proteins in normal human tissue. J Histochem Cytochem 1994; 42: 1417-25.
- 18 Baghestanian M, Hofbauer R, Kress HG, Wojta J, Fabry A, Binder BR, Kaun C, Müller MR, Mehrabi MR, Kapiotis S, Sengoelge G, Ghannadan M, Lechner K, Valent P. Thrombin augments vascular cell-dependent migration of human mast cells: role of MGF. Thromb Haemost 1997; 77: 577-84.
- 19 Zsebo KM, Williams DA, Geissler EN, Broudy VC, Martin FH, Atkins HL, Hsu RY, Birkett NC, Okino KH, Murdock DC. et al. Stem cell factor is encoded at the Sl locus of the mouse and is the ligand for the c-kit tyrosine kinase receptor. Cell 1990; 83: 213-24.
- 20 Schwartz LB, Badford TR, Littman BH, Wintroub BU. The fibrinogenolytic activity of purified tryptase from human lung mast cells. J Immunol 1985; 135: 2762-7.
- 21 Stack MS, Johnson DA. Human mast cell tryptase activates single chain urinary-type plasminogen activator (pro-urokinase). J Biol Chem 1994; 269: 9416-9.
- 22 Pejler G, Karlstrom A. Thrombin is inactivated by mast cell secretory granule chymase. J Biol Chem 1993; 268: 11817-22.
- 23 Yurt RW, Leid RW, Austen KF, Silbert JE. Native heparin from rat peritoneal mast cells. J Biol Chem 1977; 252: 518-21.
- 24 Sakai K, Ren S, Schwartz LB. A novel heparin-dependent processing pathway for human tryptase Autocatalysis followed by activation with dipeptidyl peptidase I. J Clin Invest 1996; 97: 895-6.
- 25 Stein PL, van-Zonneveld AJ, Pannekoek H, Strickland S. Structural domains of human tissue type plasminogen activator that confer stimulation by heparin. J Biol Chem 1989; 264: 15441-4.
- 26 Sillaber C, Baghestanian M, Bevec D, Willheim M, Agis H, Kapiotis S, Füreder W, Bankl HC, Kiener H, Speiser W, Binder BR, Lechner K, Valent P. The mast cell as site of tissue type plasminogen activator production and fibrinolysis. J Immunol 1999; 162: 1032-41.
- 27 Collen D, Lijnen HR. Basic and clinical aspects of fibrinolysis and thrombolysis. Blood 1991; 78: 3114-24.
- 28 Vassalli JD, Sappino AP, Belin D. The plasminogen activator/plasmin system. J Clin Invest 1991; 88: 1067-72.
- 29 Carmeliet P, Schoonjans L, Kieckens L, Ream B, Degen J, Bronson R, De Vos R, van den Oord JJ, Collen D, Mulligan RC. Physiological consequences of loss of plasminogen activator gene function in mice. Nature 1994; 368: 419-24.
- 30 Sillaber C, Baghestanian M, Hofbauer R, Virgolini I, Bankl HC, Füreder W, Agis H, Willheim M, Leimer M, Scheiner O, Binder BR, Kiener H, Bevec D, Fritsch G, Majdic O, Kress HG, Gadner H, Lechner K, Valent P. Molecular and functional characterization of the urokinase receptor on human mast cells. J Biol Chem 1997; 272: 7824-32.
- 31 Kruithof EKO. Plasminogen activator inhibitors – a review. Enzyme 1988; 40: 113-21.
- 32 Yamamoto C, Kaji T, Sakamoto M, Kozuka H, Koizumi F. Calcium regulation of tissue type plasminogen activator and plasminogen activator inhibitor-1 release from cultured human vascular endothelial cells. Thromb Res 1994; 74: 163-8.
- 33 Cho SH, Tam SW, Demissie-Sanders S, Filler SA, Oh CK. Production of plasminogen activator inhibitor-1 by human mast cells and its possible role in asthma. J Immunol 2000; 165: 3154-61.
- 34 Sundberg M. On the mast cells in the human vascular wall. Acta Pathol Microbiol Immunol Scand Suppl 1955; 107: 7-81.
- 35 Pomerance A. Peri-arterial mast cells in coronary atheroma and thrombosis. J Pathol Bacteriol 1958; 76: 55-70.
- 36 Kitamura Y, Taguchi T, Yokoyama M, Inoue M, Yamatodani A, Asano H, Koyama T, Kanamaru A, Hatanaka K, Wershil BK. Higher susceptibility of mast-cell-deficient W/Wv mutant mice to brain thromboembolism and mortality caused by intravenous injection of India ink. Am J Pathol 1986; 122: 469-80.
- 37 Irani AM, Nilsson G, Miettinen U, Craig SS, Ashman LK, Ishizaka T, Zsebo KM, Schwartz LB. Recombinant human stem cell factor stimulates differentiation of human mast cells from dispersed fetal liver cells. Blood 1992; 80: 3009-16.
- 38 Bischoff SC, Dahinden CA. c-kit ligand: A unique potentiator of mediator release by human lung mast cells. J Exp Med 1992; 175: 237-44.
- 39 Sperr WR, Czerwenka K, Mundigler G, Müller MR, Semper H, Klappacher G, Glogar D, Lechner K, Valent P. Specific activation of human mast cells by the ligand for c-kit: comparison between lung-, uterus- and heart mast cells. Int Arch Allergy Appl Immunol 1993; 102: 170-5.
- 40 Nilsson G, Butterfield JH, Nilsson K, Siegbahn A. Stem cell factor is a chemotactic factor for human mast cells. J Immunol 1994; 153: 3717-23.
- 41 Valent P, Bettelheim P. Cell surface structures on human basophils and mast cells: biochemical and functional characterization. Adv Immunol 1992; 52: 333-423.
- 42 Sillaber C, Bevec D, Ashman LK, Butterfield JH, Lechner K, Maurer D, Bettelheim P, Valent P. IL-4 regulates c-kit gene product expression in human myeloid- and mast cell progenitors. J Immunol 1991; 147: 4224-8.
- 43 Adachi S, Tsujimura T, Jippo T, Morimoto M, Isozaki K, Kasugai T, Nomura S, Kitamura Y. Inhibition of attachment between cultured mast cells and fibroblasts by Phorbol 12-Myristate 13-Acetate and stem cell factor. Exp Hematol 1995; 23: 58-65.