Synlett 2019; 30(08): 875-884
DOI: 10.1055/s-0037-1612109
synpacts
© Georg Thieme Verlag Stuttgart · New York

Diazonium Salts as Nitrogen-Based Lewis Acids

Evi R. M. Habraken
,
,
Van‘t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1090 GD Amsterdam, The Netherlands   Email: j.c.slootweg@uva.nl
› Author Affiliations
This work was supported by the Council for Chemical Sciences of The Netherlands Organization for Scientific Research (NWO/CW) by a VIDI grant (J.C.S.) and a VENI grant (A.R.J.).
Further Information

Publication History

Received: 21 December 2018

Accepted after revision: 11 January 2019

Publication Date:
08 February 2019 (online)


Abstract

Aryldiazonium salts are widely used in many organic transformations with displacement of N2 or through addition to the terminal nitrogen. Such aryldiazonium salts can be viewed as N-based Lewis acids that can react with Lewis bases to synthesize a wide variety of azo compounds. Additionally, diazonium salts are known to undergo single-electron transfer and release N2, forming an aryl radical, which results in different reactivity. Herein, we provide a concise overview of the reactivity of aryldiazonium salts undergoing classical donor-acceptor reactivity or single-electron transfer.

 
  • References

  • 1 Griess JP. Ann. Chem. Justus Liebigs 1858; 106: 123
    • 2a Kölmel DK, Jung N, Bräse S. Aust. J. Chem. 2014; 67, 328
    • 2b Mo F, Qiu D, Zhang Y, Wang J. Acc. Chem. Res. 2018; 51: 496
    • 2c Koziakov D, Wu G, Jacobi von Wangelin A. Org. Biomol. Chem. 2018; 16: 4942
    • 2d Felpin F.-X., Sengupta S.; Chem. Soc. Rev.; 2019, DOI: 10.1039/C8CS00453F
  • 3 Patai S. The Chemistry of Diazonium and Diazo Groups Part 1 . John Wiley & Sons; Chichester: 1978
  • 4 Sandmeyer T. Ber. Dtsch. Chem. Ges. 1884; 17: 1633
  • 5 Gattermann L. Ber. Dtsch. Chem. Ges. 1890; 23: 1218
  • 6 Sandmeyer T. Ber. Dtsch. Chem. Ges. 1884; 17: 2650
  • 7 Griess P. Justus Liebigs Ann. Chem. 1866; 137: 39
  • 8 Balz G, Schiemann G. Ber. Dtsch. Chem. Ges. 1927; 60: 1186
  • 9 Mai J. Ber. Dtsch. Chem. Ges. 1902; 35: 162
  • 10 Leuckart R. J. Prakt. Chem. 1890; 41: 179
  • 11 Gomberg M, Bachmann WE. J. Am. Chem. Soc. 1924; 46: 2339
  • 12 Meerwein H, Büchner E, van Emster K. J. Prakt. Chem. 1939; 152: 237
  • 13 Ginsberg A, Goerdeler J. Chem. Ber. 1961; 94: 2043
  • 14 Königs W. Ber. Dtsch. Chem. Ges. 1877; 10: 1531
  • 15 Szmant H, Levitt G. J. Am. Chem. Soc. 1954; 76: 5459
    • 16a Hantzsch A, Schulze OW. Ber. Dtsch. Chem. Ges. 1895; 28: 666
    • 16b Lewis ES, Suhr H. Chem. Ber. 1959; 92: 3043

      Recent papers on N-based Lewis acids:
    • 17a Pogoreltsev A, Tulchinsky Y, Fridman N, Gandelman M. J. Am. Chem. Soc. 2017; 139: 4062
    • 17b Zhou J, Liu LL, Cao LL, Stephan DW. Angew. Chem. Int. Ed. 2018; 57: 3322 ; and references therein
    • 18a Klingsberg E, Lewis CE. Wyeth Holdings LLC US3173907A, 1959
    • 18b Pasquier C, Tinguely E, Göttel O, Braum H.-J. The Procter & Gamble Company US 7393366 B2, 2008
    • 18c Eliu VP, Frohling B, Kauffmann D. Ciba Corporation US 20100058545 A1, 2010
    • 19a Simov D, Deligeorgiev T, Gadjev N, Penchev A. Dyes Pigm. 1991; 15: 81
    • 19b Deligeorgiev TG, Zaneva DA, Simeonova NA, Simov D. Dyes Pigm. 1996; 31: 219
    • 20a Misra TK, Das D, Sinha C. Polyhedron 1997; 16: 4163
    • 20b Saha G, Sarker KK, Chen C.-J, Chen J, Lu T.-H, Mostafa G, Sinha C. Polyhedron 2009; 28: 3586
  • 21 Greaves A, David H. US 2010031453 A1, 2010
    • 22a Hopkins MN, Richter C, Schedler M, Glorius F. Nature 2014; 510: 485
    • 22b Flanigan DM, Romanov-Michailidis F, White MN. A, Rovis T. Chem. Rev. 2015; 115: 9307
    • 22c Huynh HV. Chem. Rev. 2018; 118: 9457
    • 23a Yamada S. Fuji Photo Film Co JP 2006176745, 2006
    • 23b Yamada S. Fuji Photo Film Co JP 2006169493, 2006
    • 23c Yamada S. Fuji Photo Film Co JP 2006274054, 2006
    • 23d Yamada S. Fuji Photo Film Co JP 2006328257, 2006
    • 23e Yamada S. Fuji Photo Film Co US 20070015912 A1, 2007
  • 24 Horner L, Stöhr H. Chem. Ber. 1953; 86: 1073
    • 25a Horner L, Hoffman H. Angew. Chem. 1956; 68: 473
    • 25b Horner L, Hoffmann H. Chem. Ber. 1958; 91: 45
    • 26a Ray PC, Medikonduri S, Ramanjaneyulu GS. WO 2007083320 A2, 2007
    • 26b Ray PC, Medikonduri S, Ramanjaneyuli GS. EP1981860B1, 2011
    • 26c Ray PC, Medikonduri S, Ramanjaneyuli GS. US20110313171A1, 2011
    • 27a Carroll JA, Fisher DR, Rayner Canham GW, Sutton D. Can. J. Chem. 1974; 52: 1914
    • 27b For more information, see: Kim GC.-Y, Batchelor RJ, Yan X, Einstein FW. B, Sutton D. Inorg. Chem. 1995; 34: 6163
  • 28 Einstein FW. B, Sutton D, Vogel PL. Can. J. Chem. 1978; 56: 891
  • 29 Franzke D, Scherer C, Nuyken O, Wokaun A. J. Photochem. Photobiol. A 1997; 111: 47
  • 30 Alder MJ, Cross WI, Flower KR, Pritchard RG. J. Chem. Soc., Dalton Trans. 1999; 2563
  • 31 Yamashita R, Kikukawa K, Wada F, Matsuda T. J. Organomet. Chem. 1980; 201: 463
  • 32 Habraken ER. M, van Leest NP, Hooijschuur P, de Bruin B, Ehlers AW, Lutz M, Slootweg JC. Angew. Chem. Int. Ed. 2018; 57: 11929
  • 33 Waked AE, Memar RO, Stephan DW. Angew. Chem. Int. Ed. 2018; 57: 11934
  • 34 Habraken ER. M, van der Zee LJ. C, van de Vrande KN. A, Jupp AR, Nieger M, Ehlers AW, Slootweg JC. Eur. J. Inorg. Chem. DOI: 10.1002/ejic.201801546.
    • 35a Epperlein J, Blau B. Z. Chem. 1987; 27: 175
    • 35b Ishow E, Bellaïche C, Bouteiller L, Nakatani K, Delaire JA. J. Am. Chem. Soc. 2003; 125: 15744
    • 35c Matsui M, Suzuki M, Hayashi M, Funabiki K, Ishigure Y, Doke Y, Shiozaki H. Bull. Chem. Soc. Jpn. 2003; 76: 607
  • 36 Horner L, Stöhr H. Chem. Ber. 1953; 86: 1066
  • 37 Galli C. Chem. Rev. 1988; 88: 765
  • 38 Connelly NG, Geiger WE. Chem. Rev. 1996; 96: 877
    • 39a Granick S, Michaelis L. J. Am. Chem. Soc. 1940; 62: 2241
    • 39b Seo ET, Nelson RF, Fritsch JM, Marcoux LS, Leedy DW, Adams RN. J. Am. Chem. Soc. 1966; 88: 3498
    • 39c Yurchenko O, Freytag D, zur Borg L, Zentel R, Heinze J, Ludwigs S. J. Phys. Chem. B 2012; 116: 30

      For more information on substituted triphenylamine radicals, see:
    • 40a Creason SC, Wheeler J, Nelson RF. J. Org. Chem. 1972; 37: 4440
    • 40b Nelson RF, Philp RH. J. Phys. Chem. 1979; 83: 713
    • 40c Sreenath K, Suneesh CV, Kumar VK. R, Gopidas KR. J. Org. Chem. 2008; 73: 3245
  • 41 Connelly NG, Geiger WE. Chem. Rev. 1996; 96: 877
  • 42 Yasui S, Fujii M, Kawano C, Nishimura Y, Ohno A. Tetrahedron Lett. 1991; 32: 5601
  • 43 Yasui S, Shioji K, Ohno A. Tetrahedron Lett. 1994; 35: 2695
    • 44a Yasui S, Fujii M, Kawano C, Nishimura Y, Shioji K, Ohno A. J. Chem. Soc., Perkin. Trans. 2 1994; 177
    • 44b Yasui S, Shioji K, Ohno A. Heteroatom Chem. 1995; 6: 223
  • 45 Eymann LY. M, Tskhovrebov AG, Sienkiewicz A, Bila JL, Živković I, Rønnow HM, Wodrich MD, Vannay L, Corminboeuf C, Pattison P, Solari E, Scopelliti R, Severin K. J. Am. Chem. Soc. 2016; 138: 15126
    • 46a Tskhovrebov AG, Vuichoud B, Solari E, Scopelliti R, Severin K. J. Am. Chem. Soc. 2013; 135: 9486
    • 46b Tskhovrebov AG, Naested LC. E, Solari E, Scopelliti R, Severin K. Angew. Chem. Int. Ed. 2015; 54: 1289