Synlett 2019; 30(09): 1037-1047
DOI: 10.1055/s-0037-1612105
account
© Georg Thieme Verlag Stuttgart · New York

Halotrimethylsilane-Nitrite/Nitrate Salts: Efficient and Versatile Reagent System for Diverse Organic Synthetic Transformations

Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089-1661, USA   Email: tmathew@usc.edu   Email: gprakash@usc.edu
,
Laxman Gurung
,
Sahar Roshandel
,
Socrates B. Munoz
,
Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089-1661, USA   Email: tmathew@usc.edu   Email: gprakash@usc.edu
› Author Affiliations
Further Information

Publication History

Received: 17 December 2018

Accepted: 04 January 2019

Publication Date:
19 March 2019 (online)


Abstract

The reagent system comprised of halotrimethylsilane and nitrite or nitrate salts has now been successfully used as an efficient system for a series of versatile synthetic transformations. In recent years, the significance and efficacy of this system for reactions such as nitration of aromatics and olefins, oxidation of thiols to sulfonyl chlorides, ipso-nitrosation/nitration of arylboronic acids, ipso-nitration of α,β-unsaturated carboxylic acids to nitro olefins, etc. have been disclosed. Though the reagent system has not been exploited to its full potential, the reported reactions reveal its advantages as a very safe and convenient system that works under mild conditions. This brief Account reveals various synthetic applications of halotrimethylsilane-nitrite/nitrate salts in organic synthesis hitherto reported.

1 Introduction

2 Reactions Using a Halotrimethylsilane-Nitrate Salt System

2.1 Nitration of Olefins and Aromatics

2.2 One-Pot Preparation of gem-Chloronitroso, gem-Chloronitro, and vic-Dichloro Compounds

2.3 One-Step Conversion of Anilines into Haloarenes

2.4 Deoximation of Aldoximes to Aldehydes and Ketoximes to ­Ketones

2.5 One-Pot Synthesis of Cyclic/Noncyclic α-Nitroketones from ­Cyclic/Noncyclic Olefins

2.6 ipso-Nitration of Arylboronic Acids

2.7 ipso-Nitrosation of Arylboronic Acids

2.8 Oxidation of Sulfides and Sulfoxides to Sulfones

2.9 Oxidative Chlorination of Thiols and Disulfides to Sulfonyl ­Chlorides

2.10 α-Halogenation of Carbonyl Compounds

2.11 Decarboxylative ipso-Nitration and Dibromination of Cinnamic Acid

3 Conclusion

 
  • References

  • 1 Olah GA, Lin HC, Olah JA, Narang SC. Proc. Natl. Acad. Sci. U.S.A. 1978; 75: 1045
  • 2 Olah GA, Ramaiah P, Sandford G, Orlinkov A, Prakash GK. S. Synthesis 1994; 468
  • 3 Lee JG, Kwak KH, Hwang JP. Tetrahedron Lett. 1990; 31: 6677
  • 4 Lee JG, Cha HT. Tetrahedron Lett. 1992; 33: 3167
  • 5 Prakash GK. S, Panja C, Mathew T, Surampudi V, Petasis NA, Olah GA. Org. Lett. 2004; 6: 2205
  • 6 Mulzer J, Altenbach H.-J, Braun M, Krohn K, Reissig H.-U. Organic Synthesis Highlights . VCH; Weinheim: 1991: 25
  • 7 Fisher RH, Welt HM. Synthesis 1980; 261
  • 8 Sears C, Price CC. J. Am. Chem. Soc. 1953; 75: 3276
  • 9 Kuhn SJ, Olah GA. J. Am. Chem. Soc. 1961; 83: 4564
  • 10 Schumacher HJ, Sprenger G. Z. Anorg. Chem. 1929; 182: 139
  • 11 Topchiev AV. Nitration of Hydrocarbons and Other Organic Compounds . Pergamon; New York and London: 1959: 299
  • 12 Mohammed AH. A, Nagendrapa G. J. Chem. Sci. 2010; 122: 571
  • 13 Sandmeyer T. Chem. Ber. 1884; 17: 2650
  • 14 Friedman L, Chilebowski JF. J. Org. Chem. 1968; 33: 1636
  • 15 Doyle MP, Siegfried B, Dellaria JF. Jr. J. Org. Chem. 1977; 42: 2426
  • 16 Takamura N, Mizoguchi T, Koga K, Yamada S. Tetrahedron 1975; 31: 227
  • 17 Rosini G, Ballini R. Synthesis 1988; 833
  • 18 Rosini G, Ballini R, Petrini M, Marotta E, Righi P. Org. Prep. Proced. Int. 1990; 22: 707
  • 19 Cushman M, Mathew J. Synthesis 1982; 397
  • 20 Ashwell MA, Jackson RF.W. Synthesis 1988; 229
  • 21 Rene L, Royer R. Synthesis 1981; 878
  • 22 Reddy MV. R, Kumaresaran R, Vankar YD. Tetrahedron Lett. 1995; 36: 7149
  • 23 Miyaura N, Yanagi T, Suzuki A. Synth. Commun. 1981; 11: 513
  • 24 Hassan J, Sevignon M, Gozzi C, Schulz E, Lemaire M. Chem. Rev. 2002; 102: 1359; and references cited therein
  • 25 Petasis NA, Boral S. Tetrahedron Lett. 2001; 42: 539
  • 26 Petasis NA, Goodman A, Zavialov IA. Tetrahedron 1997; 53: 16463
  • 27 Prakash GK. S, Mandal M, Schweizer S, Petasis NA, Olah GA. J. Org. Chem. 2002; 67: 3718; and references cited therein
  • 28 Diorazio LJ, Widdowson DA, Clough JM. Tetrahedron 1992; 48: 8073
  • 29 Petasis NA, Yudin AK, Zavialov LA, Prakash GK. S, Olah GA. Synlett 1997; 606
  • 30 Thiebes C, Prakash GK. S, Petasis NA, Olah GA. Synlett 1998; 141
  • 31 Crivello JV. J. Org. Chem. 1981; 46: 3056
  • 32 Molander GA, Cavalcanti LN. J. Org. Chem. 2012; 77: 4402
  • 33 Baidya M, Yamamoto H. J. Am. Chem. Soc. 2011; 133: 13880
  • 34 Prakash GK. S, Gurung L, Schmid PC, Wang F, Thomas TE, Panja C, Mathew T, Olah GA. Tetrahedron Lett. 2014; 55: 1975
  • 35 Prakash GK. S, Mathew T, Panja C, Olah GA. J. Org. Chem. 2007; 72: 5847
  • 36 Sohmiya H, Kimura T, Fujita M, Ando T. Tetrahedron 1998; 54: 13737
  • 37 Park YJ, Shin HH, Kim YH. Chem. Lett. 1992; 21: 1483
  • 38 Thomas G. Medicinal Chemistry: An Introduction . Wiley; New York: 2000
  • 39 Arabaci G, Guo X.-C, Beebe KD, Coggeshall KM, Pei D. J. Am. Chem. Soc. 1999; 121: 5085
  • 40 Arabaci G, Yi T, Fu H, Porter ME, Beebe KD, Pei D. Bioorg. Med. Chem. Lett. 2002; 12: 3047
  • 41 Prakash GK. S, Ismail R, Garcia J, Panja C, Mathew T, Olah GA. Tetrahedron Lett. 2011; 52: 1217
  • 42 Schmidt M, Schmidbaur H. Angew. Chem. 1959; 71: 220
  • 43 Boughriet A, Coumare A, Fischer JC, Wartel M. Int. J. Chem. Kinet. 1988; 20: 775
  • 44 Ray JD, Ogg RA. Jr. J. Chem. Phys. 1959; 31: 168
  • 45 Fioravanti S, Pellacani L, Tardella PA, Vergari MC. Org. Lett. 2008; 10: 1449
  • 46 Alizadeh A, Khodaei MM, Eshghi A. J. Org. Chem. 2010; 75: 8295
  • 47 Das JP, Sinha P, Roy S. Org. Lett. 2002; 4: 3055
  • 48 Ramgopal S, Ramesh K, Chakradhar A, Reddy NM, Rajanna KC. Tetrahedron Lett. 2007; 48: 4043
  • 49 Chary VS, Rajanna KC, Krishnaiah G, Srinivas P. Catal. Sci. Technol. 2016; 6: 1430
  • 50 Maity S, Manna S, Rana S, Naveen T, Mallick A, Maiti D. J. Am. Chem. Soc. 2013; 135: 3355
  • 51 Manna S, Jana S, Saboo T, Maji A, Maiti D. Chem. Commun. 2013; 49: 5286
  • 52 Dutta U, Maity S, Kancherla R, Maiti D. Org. Lett. 2014; 16: 6302 ; and references cited therein
  • 53 Taniguchi T, Fujii T, Ishibashi H. J. Org. Chem. 2010; 75: 8126
  • 54 Naveen T, Maity S, Sharma U, Maiti D. J. Org. Chem. 2013; 78: 5949
  • 55 Roshandal S, Gurung L, Mathew T, Surya Prakash GK. S. Tetrahedron Lett. 2017; 58: 2842
  • 56 Luo Z.-G, Xu F, Fang Y.-Y, Liu P, Xu X.-M, Feng C.-T, Li Z, He J. Res. Chem. Intermed. 2016; 42: 6079
  • 57 Gates CB. J. Phys. Chem. 1910; 15: 97
  • 58 McGeary MJ, Wedlich RC, Coan PS, Folting K, Coulton KG. Polyhedron 1992; 11: 2459
  • 59 McMullen AK, Tilley TD, Rheingold AL, Geib SJ. Inorg. Chem. 1989; 28: 3772