Synlett 2019; 30(09): 1015-1025
DOI: 10.1055/s-0037-1612057
account
© Georg Thieme Verlag Stuttgart · New York

Sharpening Up Your Spectra: Broadband Homonuclear Decoupling in HSQC by Real-Time Pure Shift Acquisition

Peter Kiraly
,
Gareth A. Morris
,
Liu Quanxiu
,
School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK   Email: mathias.nilsson@manchester.ac.uk
› Author Affiliations
This work was funded by the Engineering and Physical Sciences Research Council (grant number EP/N033949).
Further Information

Publication History

Received: 13 November 2018

Accepted after revision: 18 December 2018

Publication Date:
06 February 2019 (online)


Abstract

Structure elucidation using NMR spectroscopy has become a vital part of the toolkit of modern synthetic chemistry. Characterisation of final products, quality control of production, analysis of complex mixtures in synthetic method development, and structure elucidation of isolated natural products are examples where NMR spectroscopy is a part of daily routine. The two factors that usually limit the applicability of NMR are resolution and sensitivity. The experimental method described in this Account, real-time pure shift acquisition, yields heteronuclear correlation spectra such as HSQC that offer significant improvements in both resolution and sensitivity, at negligible cost to the analyst. The advantages that real-time pure shift acquisition enjoys over conventional experiments are discussed and illustrated with selected examples including carbohydrate and alkaloid mixtures. Advanced data acquisition and processing techniques that reduce experiment time and are easily combined with pure shift NMR methods are also described.

1 Introduction

2 Simultaneous Sensitivity and Resolution Enhancement Using Real-Time Acquisition in HSQC

3 Processing Pure Shift Data

4 Pulse Sequences for Real-Time Pure Shift HSQC

5 Conclusions and Future Perspectives

 
  • References and Notes

    • 1a Boyer RD, Johnson R, Krishnamurthy K. J. Magn. Reson. 2003; 165: 253
    • 1b Kay LE, Keifer P, Saarinen T. J. Am. Chem. Soc. 1992; 114: 10663
  • 2 Bodenhausen G, Ruben DJ. Chem. Phys. Lett. 1980; 69: 185
    • 3a Styles P, Soffe NF, Scott CA, Cragg DA, Row F, White DJ, White PC. J. J. Magn. Reson. 1984; 60: 397
    • 3b Kovacs H, Moskau D, Spraul M. Prog. Nucl. Magn. Reson. Spectrosc. 2005; 46: 131
  • 4 Hoult DI, Richards RE. J. Magn. Reson. 1976; 24: 71
  • 5 Foroozandeh M, Adams RW, Meharry NJ, Jeannerat D, Nilsson M, Morris GA. Angew. Chem. Int. Ed. 2014; 53: 6990
    • 6a Aguilar JA, Faulkner S, Nilsson M, Morris GA. Angew. Chem. Int. Ed. 2010; 49: 3901
    • 6b Nilsson M, Morris GA. Chem. Commun. 2007; 9: 933
  • 7 Zangger K, Sterk H. J. Magn. Reson. 1997; 124: 486
  • 8 Garbow JR, Weitekamp DP, Pines A. Chem. Phys. Lett. 1982; 93: 504
    • 9a Shaka AJ, Barker PB, Freeman R. J. Magn. Reson. 1985; 64: 547
    • 9b Shaka AJ, Frenkiel T, Freeman R. J. Magn. Reson. 1983; 52: 159
    • 9c Shaka AJ, Keeler J, Freeman R. J. Magn. Reson. 1983; 53: 313
    • 9d Shaka AJ, Keeler J, Frenkiel T, Freeman R. J. Magn. Reson. 1983; 52: 335
    • 10a Jesson JP, Meakin P, Kneissel G. J. Am. Chem. Soc. 1973; 95: 618
    • 10b Nagayama K. J. Chem. Phys. 1979; 71: 4404
  • 11 Kupce E, Wagner G. J. Magn. Reson., Ser. B 1995; 109: 329
    • 12a Hammarstrom A, Otting G. J. Am. Chem. Soc. 1994; 116: 8847
    • 12b Mccoy MA, Mueller L. J. Magn. Reson., Ser. A 1993; 101: 122
  • 13 Aue WP, Karhan J, Ernst RR. J. Chem. Phys. 1976; 64: 4226
  • 14 Bax A, Mehlkopf AF, Smidt J. J. Magn. Reson. 1979; 35: 167
  • 15 Castanar L, Nolis P, Virgili A, Parella T. Chem. Eur. J. 2013; 19: 17283
  • 16 Aguilar JA, Nilsson M, Morris GA. Angew. Chem. Int. Ed. 2011; 50: 9716
  • 17 Foroozandeh M, Adams RW, Kiraly P, Nilsson M, Morris GA. Chem. Commun. 2015; 51: 15410
  • 18 Moutzouri P, Chen Y, Foroozandeh M, Kiraly P, Phillips AR, Coombes SR, Nilsson M, Morris GA. Chem. Commun. 2017; 53: 10188
  • 19 Sakhaii P, Haase B, Bermel W. J. Magn. Reson. 2009; 199: 192
  • 20 Kiraly P, Adams RW, Paudel L, Foroozandeh M, Aguilar JA, Timari I, Cliff MJ, Nilsson M, Sandor P, Batta G, Waltho JP, Kover KE, Morris GA. J. Biomol. NMR 2015; 62: 43
    • 21a Ying JF, Roche JL, Bax A. J. Magn. Reson. 2014; 241: 97
    • 21b Adams RW, Byrne L, Kiraly P, Foroozandeh M, Paudel L, Nilsson M, Clayden J, Morris GA. Chem. Commun. 2014; 50: 2512
    • 21c Lupulescu A, Olsen GL, Frydman L. J. Magn. Reson. 2012; 218: 141
  • 22 Paudel L, Adams RW, Kiraly P, Aguilar JA, Foroozandeh M, Cliff MJ, Nilsson M, Sandor P, Waltho JP, Morris GA. Angew. Chem. Int. Ed. 2013; 52: 11616
  • 23 Morris GA, Smith KI. Mol. Phys. 1987; 61: 467
  • 24 Morris GA, Smith KI. J. Magn. Reson. 1985; 65: 506
  • 25 Mehlkopf AF, Korbee D, Tiggelman TA, Freeman R. J. Magn. Reson. 1984; 58: 315
  • 26 Goodwin DL, Kuprov I. J. Chem. Phys. 2016; 144: 20
    • 27a Kazimierczuk K, Zawadzka A, Kozminski W, Zhukov I. J. Biomol. NMR 2006; 36: 157
    • 27b Kupce E, Freeman R. J. Magn. Reson. 2005; 173: 317
    • 27c Orekhov VY, Ibraghimov I, Billeter M. J. Biomol. NMR 2003; 27: 165
  • 28 Kupce E, Freeman R, Wider G, Wuthrich K. J. Magn. Reson., Ser. A 1996; 122: 81
  • 29 Sakhaii P, Haase B, Bermel W, Kerssebaum R, Wagner GE, Zangger K. J. Magn. Reson. 2013; 233: 92
  • 30 Led JJ, Gesmar H. Chem. Rev. 1991; 91: 1413
  • 31 Lindon JC, Ferrige AG. Prog. Nucl. Magn. Reson. Spectrosc. 1980; 14: 27
    • 32a Pervushin K, Riek R, Wider G, Wuthrich K. J. Am. Chem. Soc. 1998; 120: 6394
    • 32b Salzmann M, Pervushin K, Wider G, Senn H, Wuthrich K. Proc. Natl. Acad. Sci. U.S.A. 1998; 95: 13585
    • 33a Ikura M, Kay LE, Bax A. Biochemistry 1990; 29: 4659
    • 33b Kay LE, Ikura M, Tschudin R, Bax A. J. Magn. Reson. 1990; 89: 496
  • 34 Waugh JS, Huber LM, Haeberlen U. Phys. Rev. Lett. 1968; 20: 180
  • 35 Vinogradov E, Madhu PK, Vega S. Chem. Phys. Lett. 1999; 314: 443
  • 36 Smith MA, Hu H, Shaka AJ. J. Magn. Reson. 2001; 151: 269
  • 37 Levitt MH, Freeman R. J. Magn. Reson. 1981; 43: 502
  • 38 Tycko R, Pines A, Guckenheimer J. J. Chem. Phys. 1985; 83: 2775
  • 39 Kiraly P, Nilsson M, Morris GA. Magn. Reson. Chem. 2018; 56: 993
  • 40 Kiraly P, Nilsson M, Morris GA. J. Magn. Reson. 2018; 293: 19
  • 41 Pulse sequence codes, parameter sets, and experimental data for all the results presented here are available for free download at DOI: 10.17632/dgxwnf6x9s.1 and from our website https://nmr.chemistry.manchester.ac.uk/?q=node/429).