Synlett 2019; 30(16): 1919-1923
DOI: 10.1055/s-0037-1611917
letter
© Georg Thieme Verlag Stuttgart · New York

Platinum-on-Carbon-Catalyzed Aqueous Oxidative Lactonization of Diols by Using Molecular Oxygen

Ryoya Takakura
,
Kazuho Ban
,
Hironao Sajiki
,
This study was supported by a Grant-in-Aid for JSPS Research Fellows from the Japan Society for the Promotion of Science (JSPS, Number: 18J23126) for R.T.
Weitere Informationen

Publikationsverlauf

Received: 12. Juli 2019

Accepted after revision: 08. August 2019

Publikationsdatum:
27. August 2019 (online)


Abstract

A lactonization of various diols catalyzed by platinum on carbon (Pt/C) in water under an atmosphere of molecular oxygen was developed. Derivatives of 1,4- 1,5- and 1,6-diols were transformed into the corresponding five-, six-, and seven-membered lactones by the present oxidative lactonization method.

Supporting Information

 
  • References and Notes

  • 1 March J. Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 3rd ed. Wiley; New York: 1985
    • 2a March J. Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 3rd ed. Wiley; New York: 1985: 348
    • 2b Mukaiyama T. Angew. Chem. 1979; 91: 798 ; Angew. Chem. Int. Ed. 1979, 18, 707
    • 3a March J. Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 3rd ed. Wiley; New York: 1985
    • 3b Leisch H, Morley K, Lau PC. K. Chem. Rev. 2011; 111: 4165
    • 4a Fétizon M, Golfier M, Louis J.-M. J. Chem. Soc. D 1969; 1118
    • 4b Fétizon M, Golfier M, Louis J.-M. Tetrahedron 1975; 31: 171
    • 5a Stenberg VI, Perkins RJ. J. Org. Chem. 1963; 28: 323
    • 5b Johnston P, Sheppard RC, Stehr CE, Turner S. J. Chem. Soc. C 1966; 1847
    • 6a Lee M, Chang S. Tetrahedron Lett. 2000; 41: 7507
    • 6b Arita S, Koike T, Kayaki Y, Ikariya T. Chem. Asian J. 2008; 3: 1479
    • 6c Endo Y, Bäckvall J.-E. Chem. Eur. J. 2011; 17: 12596
    • 7a Aït-Mohand S, Muzart J. J. Mol. Catal. A: Chem. 1998; 129: 135
    • 7b Nishimura T, Onoue T, Ohe K, Uemura S. J. Org. Chem. 1999; 64: 6750
    • 7c Bai X.-F, Ye F, Zheng L.-S, Lai G.-Q, Xia CG, Xu L.-W. Chem. Commun. 2012; 48: 8592
  • 8 Ikariya T, Kuwata S, Kayaki Y. Pure Appl. Chem. 2010; 82: 1471
  • 9 Biswas S, Mullick K, Chen S.-Y, Gudz A, Carr DM, Mendoza C, Angeles-Boza AM, Suib SL. Appl. Catal., B 2017; 203: 607
    • 10a Ji H, Mizugaki T, Ebitani K, Kaneda K. Tetrahedron Lett. 2002; 43: 7179
    • 10b Yamaguchi K, Mizuno N. Chem. Eur. J. 2003; 9: 4353
    • 10c Mizuno N, Yamaguchi K. Catal. Today 2008; 132: 18
    • 11a Kakiuchi N, Nishimura T, Inoue M, Umemura S. Bull. Chem. Soc. Jpn. 2001; 74: 165
    • 11b Kwon MS, Kim N, Park CM, Lee JS, Kang KY, Park J. Org. Lett. 2005; 7: 1077
  • 12 Zhong W, Liu H, Bai C, Liao S, Li Y. ACS Catal. 2015; 5: 1850
    • 13a Abad A, Corma A, García H. Chem. Eur. J. 2008; 14: 212
    • 13b Huang J, Dai W.-L, Fan K. J. Phys. Chem. C 2008; 112: 16110
    • 13c Mitsudome T, Noujima A, Mizugaki T, Jitsukawa K, Kaneda K. Green Chem. 2009; 11: 793
    • 13d Zheng J, Huang J, Li X, Dai W.-L, Fan K. RSC Adv. 2012; 2: 3801
    • 13e Oberhauser W, Lavacchi A, Vizza F, Capozzoli L. Appl. Catal., A 2013; 451: 58
    • 14a Ishii Y, Osakada K, Ikariya T, Saburi M, Yoshikawa S. Tetrahedron Lett. 1983; 24: 2677
    • 14b Suzuki T, Morita K, Tsuchida M, Hiroi K. Org. Lett. 2002; 4: 2361
    • 14c Ito M, Osaku A, Shiibashi A, Ikariya T. Org. Lett. 2007; 9: 1821
    • 14d Buntara T, Noel S, Phua PH, Melián-Cabrera I, de Vries JG, Heeres HJ. Angew. Chem. Int. Ed. 2011; 50: 7083
    • 14e Nicklaus CM, Phua PH, Buntara T, Noel S, Heeres HJ, de Vries JG. Adv. Synth. Catal. 2013; 355: 2839
    • 14f Aellig C, Jenny F, Scholz D, Wolf P, Giovinazzo I, Kollhoff F, Hermans I. Catal. Sci. Technol. 2014; 4: 2326
  • 15 Zhu Q.-J, Dai W.-L, Fan K.-N. Green Chem. 2010; 12: 205
    • 16a Touchy AS, Shimizu K.-i. RSC Adv. 2015; 5: 29072
    • 16b Dutta I, Sarbajna A, Pandey P, Rahaman SM. W, Singh K, Bera JK. Organometallics 2016; 35: 1505
    • 16c Gülcemal S, Gülcemal D, Whitehead GF. S, Xiao J. Chem. Eur. J. 2016; 22: 10513
    • 16d Wada E, Tyagi A, Yamamotoa A, Yoshida H. Photochem. Photobiol. Sci. 2017; 16: 1744
    • 17a Fried J, Sih JC. Tetrahedron Lett. 1973; 14: 3899
    • 17b Kretchmer RA, Thompson WJ. J. Am. Chem. Soc. 1976; 98: 3379
    • 17c Lansbury PT, Hangauer DG. Jr. Vacca J. P. 1980; 102: 3964
    • 18a Sawama Y, Morita K, Yamada T, Nagata S, Yabe Y, Monguchi Y, Sajiki H. Green Chem. 2014; 16: 3439
    • 18b Sawama Y, Morita K, Asai S, Kozawa M, Tadokoro S, Nakajima J, Monguchi Y, Sajiki H. Adv. Synth. Catal. 2015; 357: 1205
  • 19 Monguchi Y, Ida T, Maejima T, Yanase T, Sawama Y, Sasai Y, Kondo S, Sajiki H. Adv. Synth. Catal. 2014; 356: 313
  • 20 2-Benzofuran-1(3H)-one (2a); Typical Procedure A test tube was charged with 1,2-phenylenedimethanol (1a; 34.5 mg, 0.25 mmol), 10% Pt/C (2.5 mg, 0.00125 mmol, 0.5 mol%), and H2O (1 mL), then sealed with a septum. The atmosphere in the test tube was replaced with O2 (balloon), and the mixture was stirred with a ChemiStation (EYELA Tokyo Rikakikai Co., Ltd., Tokyo, Japan) and heated at 80 °C for 12 h. The mixture was then cooled to r.t. and passed through a membrane filter (Millex-LH 0.20 μm; Millipore) to remove the insoluble catalyst. The filtrate was extracted with EtOAc (3 × 5.0 mL), and the combined organic layers were dried (MgSO4) and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexane–EtOAc) to give a white solid; yield: 29.5 mg (0.22 mmol, 88%). 1H NMR (CDCl3): δ = 7.93 (d, J = 7.5 Hz, 1 H), 7.70 (t, J = 7.5 Hz, 1 H), 7.55 (t, J = 7.5 Hz, 1 H), 7.52 (d, J = 7.5 Hz, 1 H), 5.34 (s, 2 H).
  • 21 Mori S, Takubo M, Makida K, Yanase T, Aoyagi S, Maegawa T, Monguchi Y, Sajiki H. Chem. Commun. 2009; 5159
  • 22 Fujita K, Ito W, Yamaguchi R. ChemCatChem 2014; 6: 109
    • 23a Ng YH, Ikeda S, Harada T, Morita Y, Matsumura M. Chem. Commun. 2008; 3181
    • 23b Ng YH, Ikeda S, Morita Y, Harada T, Ikeue K, Matsumura M. J. Phys. Chem. C 2009; 113: 12799
    • 23c Karimi B, Behzadnia H, Bostina M, Vali H. Chem. Eur. J. 2012; 18: 8634
  • 24 Analysis by atomic absorption spectrometry indicated that no Pt metal (<1 ppm) leached into the reaction mixture during the first run (Table 1, entry 11). When recovered Pt/C was used in a second run, 2a was obtained in 77% yield together with the starting material 1a (11% yield).