Synlett 2019; 30(18): 2027-2034 DOI: 10.1055/s-0037-1611912
© Georg Thieme Verlag Stuttgart · New York
Ruthenium-Catalyzed Direct Cross-Coupling of Secondary Alcohols to β-Disubstituted Ketones
Subramanian Thiyagarajan
,
School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar-752050, India Email:
gunanathan@niser.ac.in
› Author Affiliations We thank SERB New Delhi (EMR/2016/002517), DAE, and NISER for financial support.
Abstract
The β-disubstituted ketone functionality is prevalent in biologically active compounds and in pharmaceuticals. A ruthenium-catalyzed direct synthesis of β-disubstituted ketones by cross-coupling of two different secondary alcohols is reported. This new protocol was applied to the synthesis of variety of β-disubstituted ketones from various cyclic, acyclic, symmetrical, and unsymmetrical secondary alcohols. An amine–amide metal–ligand cooperation in a Ru catalyst facilitates the activation and formation of covalent bonds in selective sequences to provide the products. Kinetic and deuterium-labeling experiments suggested that aliphatic alcohols oxidize faster than benzylic secondary alcohols. A plausible mechanism is proposed on the basis of mechanistic and kinetic studies. Water and H2 are the only byproducts from this selective cross-coupling of secondary alcohols.
1 Introduction
2 Catalytic Self- or Cross-Coupling of Alcohols and Selectivity Challenges
3 Recent Developments in the Synthesis of β-Disubstituted Ketones
4 Scope of Ruthenium-Catalyzed Cross-Couplings of Secondary Alcohols
5 Mechanistic Studies and Proposed Mechanism
6 Conclusion
Key words
cross-coupling -
alcohols -
ketones -
ruthenium catalysis -
homogeneous catalysis -
green synthesis
References
1a
Toh QY,
McNally A,
Vera S,
Erdmann N,
Gaunt MJ.
J. Am. Chem. Soc. 2013; 135: 3772
1b
Maeyama K,
Yamashita K,
Saito H,
Aikawa S,
Yoshida Y.
Polym. J. (Tokyo) 2012; 44: 315
1c
Vooturi SK,
Cheung CM,
Rybak MJ,
Firestine SM.
J. Med. Chem. 2009; 52: 5020
1d
Walter MW.
Nat. Prod. Rep. 2002; 19: 278
1e
Smith MB,
March J.
March’s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 6th ed. Wiley-Interscience; Hoboken: 2007
2a
Caine D.
In
Comprehensive Organic Synthesis , Vol. 3.
Trost BM,
Fleming I.
Pergamon; Oxford: 1991. Chap. 1.1, 1-63
2b
Reetz MT.
Angew. Chem., Int. Ed. Engl. 1982; 21: 96
3a
Parthasarathy G,
Hart R,
Jamro E,
Miner L.
Clean Technol. Environ. Policy 2005; 7: 219
3b
Metzger JO,
Eissen M.
C. R. Chim. 2004; 7: 569
3c
Jenck JF,
Agterberg F,
Droescher MJ.
Green Chem. 2004; 6: 544
4a
Huang F,
Liu Z,
Yu Z.
Angew. Chem. Int. Ed. 2016; 55: 862
4b
Obora Y.
Top. Curr. Chem. 2016; 374: 1
4c
Obora Y.
ACS Catal. 2014; 4: 3972
For reviews on borrowing-hydrogen methodology, see:
5a
Corma A,
Navas J,
Sabater MJ.
Chem. Rev. 2018; 118: 1410
5b
Faisca Phillips AM,
Pombeiro AJ. L,
Kopylovich MN.
ChemCatChem 2017; 9: 217
5c
Chelucci G.
Coord. Chem. Rev. 2017; 331: 1
5d
Yang Q,
Wang Q,
Yu Z.
Chem. Soc. Rev. 2015; 44: 2305
5e
Nandakumar A,
Midya SP,
Landge VG,
Balaraman E.
Angew. Chem. Int. Ed. 2015; 54: 11022
5f
Ketcham JM,
Shin I,
Montgomery TP,
Kriche MJ.
Angew. Chem. Int. Ed. 2014; 53: 9142
5g
Pan S,
Shibata T.
ACS Catal. 2013; 3: 704
5h
Obora TD,
Ishii Y.
Synlett 2011; 2011: 30
5i
Bähn S,
Imm S,
Neubert L,
Zhang M,
Neumann H,
Beller M.
ChemCatChem 2011; 3: 1853
5j
Dobereiner GE,
Crabtree RH.
Chem. Rev. 2010; 110: 681
5k
Guillena G,
Ramón DJ,
Yus M.
Chem. Rev. 2010; 110: 1611
5l
Watson AJ. A,
Williams JM. J.
Science 2010; 329: 635
5m
Nixon TD,
Whittlesey MK,
Williams JM. J.
Dalton Trans. 2009; 753
5n
Hamid MH. S. A,
Slatford PA,
Williams JM. J.
Adv. Synth. Catal. 2007; 349: 1555
5o
Guillena G,
Ramón DJ,
Yus M.
Angew. Chem. Int. Ed. 2007; 46: 2358
For reviews on acceptorless dehydrogenation of alcohols, see:
6a
Crabtree RH.
Chem. Rev. 2017; 117: 9228
6b
Khusnutdinova JR,
Milstein D.
Angew. Chem. Int. Ed. 2015; 54: 12236
6c
Gunanathan C,
Milstein D.
Chem. Rev. 2014; 114: 12024
6d
Gunanathan C,
Milstein D.
Science 2013; 341: 1229712
6e
Gunanathan C,
Milstein D.
Acc. Chem. Res. 2011; 44: 588
7a
Das UK,
Ben-David Y,
Leitus G,
Diskin-Posner Y,
Milstein D.
ACS Catal. 2019; 9: 479
7b
Paudel K,
Pandey B,
Xu S,
Taylor DK,
Tyer DL,
Torres CL,
Gallagher S,
Kong L,
Ding K.
Org. Lett. 2018; 20: 4478
7c
Nielsen M,
Junge H,
Kammer A,
Beller M.
Angew. Chem. Int. Ed. 2012; 51: 5711
7d
Sølvhøj A,
Madsen R.
Organometallics 2011; 30: 6044
7e
Gnanaprakasam B,
Ben-David Y,
Milstein D.
Adv. Synth. Catal. 2010; 352: 3169
7f
Gunanathan C,
Shimon LJ. W,
Milstein D.
J. Am. Chem. Soc. 2009; 131: 3146
7g
Zhang J,
Leitus G,
Ben-David Y,
Milstein D.
J. Am. Chem. Soc. 2005; 127: 10840
8a
Chakraborty S,
Daw P,
Ben-David Y,
Milstein D.
ACS Catal. 2018; 8: 10300
8b
Tan D.-W,
Li H.-X,
Zhu D.-L,
Li H.-Y,
Young DJ,
Yao J.-L,
Lang J.-P.
Org. Lett. 2018; 20: 608
8c
Sahoo AR,
Lalitha G,
Murugesh V,
Bruneau C,
Sharma GV. M,
Suresh S,
Achard M.
J. Org. Chem. 2017; 82: 10727
8d
Jiménez MV,
Fernández-Tornos J,
Modrego FJ,
Pérez-Torrente JJ,
Oro LA.
Chem. Eur. J. 2015; 21: 17877
9a
Aitchison H,
Wingad RL,
Wass DF.
ACS Catal. 2016; 6: 7125
9b
Xie Y,
Ben-David Y,
Shimon LJ. W,
Milstein D.
J. Am. Chem. Soc. 2016; 138: 9077
9c
Kozlowski JT,
Davis RJ.
ACS Catal. 2013; 3: 1588
10a
Chaudhari C,
Siddiki SM. A. H,
Shimizu K.-i.
Top. Catal. 2014; 57: 1042
10b
Makarov IS,
Madsen R.
J. Org. Chem. 2013; 78: 6593
11a
Liu T,
Wang L,
Wu K,
Yu Z.
ACS Catal. 2018; 8: 7201
11b
Roy BC,
Debnath S,
Chakrabarti K,
Paul B,
Maji M,
Kundu S.
Org. Chem. Front. 2018; 5: 1008
11c
Shee S,
Paul B,
Panja D,
Roy BC,
Chakrabarti K,
Ganguli K,
Das A,
Das GK,
Kundu S.
Adv. Synth. Catal. 2017; 359: 3888
11d
Wang Q,
Wu K,
Yu Z.
Organometallics 2016; 35: 1251
12
Thiyagarajan S,
Gunanathan C.
J. Am. Chem. Soc. 2019; 141: 3822
13
Ji J,
Liu P,
Sun P.
Chem. Commun. 2015; 51: 7546
14
Zhu X,
Ye C,
Li Y,
Bao H.
Chem. Eur. J. 2017; 23: 10254
15
Rey J,
Hu H,
Snyder JP,
Barrett AG. M.
Tetrahedron 2012; 68: 9211
16a
Kong W,
Yu C,
An H,
Song Q.
Org. Lett. 2018; 20: 349
16b
Xia Z.-H,
Zhang C.-L,
Gao Z.-H,
Ye S.
Org. Lett. 2018; 20: 3496
17
Akhtar WM,
Cheong CB,
Frost JR,
Christensen KE,
Stevenson NG,
Donohoe TJ.
J. Am. Chem. Soc. 2017; 139: 2577
18a
Thiyagarajan S,
Gunanathan C.
ACS Catal. 2018; 8: 2473
18b
Krishnakumar V,
Gunanathan C.
Chem. Commun. 2018; 54: 8705
18c
Thiyagarajan S,
Gunanathan C.
ACS Catal. 2017; 7: 5483
18d
Krishnakumar V,
Chatterjee B,
Gunanathan C.
Inorg. Chem. 2017; 56: 7278
18e
Chatterjee B,
Gunanathan C.
Chem. Commun. 2016; 52: 4509
18f
Chatterjee B,
Gunanathan C.
Org. Lett. 2015; 17: 4794
19
Anaby A,
Schelwies M,
Schwaben J,
Rominger F,
Hashmi AS. K,
Schaub T.
Organometallics 2018; 37: 2193
20
Chakraborty S,
Lagaditis PO,
Förster M,
Bielinski EA,
Hazari N,
Holthausen MC,
Jones WD,
Schneider S.
ACS Catal. 2014; 4: 3994