Synthesis 2019; 51(20): 3834-3846
DOI: 10.1055/s-0037-1611896
paper
© Georg Thieme Verlag Stuttgart · New York

Enantioselective Synthesis of cis- and trans-Borocyclopropylmethanol: Simple Building Blocks To Access Heterocycle-Substituted Cyclopropylmethanols

Saher H. Siddiqui
,
Chandrasekhar Navuluri
,
FRQNT Centre in Green Chemistry and Catalysis, Department of Chemistry, Université de Montréal, P.O. Box 6128, Station Downtown, Montreal, Quebec, H3C 3J7, Canada   Email: andre.charette@umontreal.ca
› Author Affiliations
This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) (Discovery Grant DG-06438), the Canada Research Chairs program (227346), the Canada Foundation for Innovation (Leaders Opportunity Funds 227346), the Fonds de Recherche du Québec - Nature et Technologies (FRQNT Centre in Green Chemistry and Catalysis; RS-171310), and the Université de Montréal.
Further Information

Publication History

Received: 26 June 2019

Accepted: 02 July 2019

Publication Date:
01 August 2019 (online)


Abstract

An enantioselective and non-oxidative methodology was developed to obtain enantioenriched cyclopropyl boronates using a diethanolamine-promoted selective decomplexation of dioxaborolane. The non-oxidative decomplexation of the dioxaborolane ligand from the cyclopropylmethoxide species formed in the dioxaborolane-mediated Simmons–Smith cyclopropanation reaction provided the enantio­enriched CIDA-based (CIDA = N-cyclohexyliminodiacetic acid) boro­cyclopropane in 92% yield and 95.6:4.4 er. A robustness screen has shown diethanolamine to be compatible with esters, carbamates and N-heterocycles, providing a tool to access enantioenriched cyclopropanes carrying not only base-sensitive but oxidizable functional groups as well. Diethanolamine was found to be compatible with the modified zinco-cyclopropanation reaction of allyl alcohol to remove residual dioxaborolane from the corresponding cis-N-heterocycle cyclopropylmethanol, thereby leading to improved yields.

Supporting Information

 
  • References

  • 1 Wessjohann LA, Brandt W, Thiemann T. Chem. Rev. 2003; 103: 1625
  • 2 Talele TT. J. Med. Chem. 2016; 59: 8712
  • 3 Knapp DM, Gillis EP, Burke MD. J. Am. Chem. Soc. 2009; 131: 6961
  • 4 Ebner C, Carreira EM. Chem. Rev. 2017; 117: 11651
  • 5 Volgraf M, Sellers BD, Jiang Y, Wu G, Ly CQ, Villemure E, Pastor RM, Yuen P.-w, Lu A, Luo X, Liu M, Zhang S, Sun L, Fu Y, Lupardus PJ, Wallweber HJ. A, Liederer BM, Deshmukh G, Plise E, Tay S, Reynen P, Herrington J, Gustafson A, Liu Y, Dirksen A, Dietz MG. A, Liu Y, Wang T.-M, Hanson JE, Hackos D, Scearce-Levie K, Schwarz JB. J. Med. Chem. 2016; 59: 2760
    • 6a Tedford CE, Phillips JG, Gregory R, Panlowski GP, Fadnis L, Khan MA, Ali SM, Handley MK, Yates SL. J. Pharmacol. Exp. Ther. 1999; 289: 1160
    • 6b Liddle J, Bamborough P, Barker MD, Campos S, Chung CW, Cousins RP. C, Faulder P, Heathcote ML, Hobbs H, Holmes DS, Ioannou C, Ramirez-Molina C, Morse MA, Osborn R, Payne JJ, Pritchard JM, Rumsey WL, Tape DT, Vicentini G, Whitworth C, Williamson RA. Bioorg. Med. Chem. Lett. 2012; 22: 5222
    • 6c Raheem IT, Schreier JD, Fuerst J, Gantert L, Hostetler ED, Huszar S, Joshi A, Kandebo M, Kim SH, Li J, Ma B, McGaughey G, Sharma S, Shipe WD, Uslaner J, Vandeveer GH, Yan Y, Renger JJ, Smith SM, Coleman PJ, Cox CD. Bioorg. Med. Chem. Lett. 2016; 26: 126
    • 7a Sayes M, Charette AB. Angew. Chem. Int. Ed. 2018; 57: 13514
    • 7b Benoit G, Charette AB. J. Am. Chem. Soc. 2017; 139: 1364
    • 7c Spencer JA, Jamieson C, Talbot EP. A. Org. Lett. 2017; 19: 3891
    • 7d de Meijere A, Khlebnikov AF, Sünnemann HW, Frank D, Rauch K, Yufit DS. Eur. J. Org. Chem. 2010; 3295
    • 7e Fontani P, Carboni B, Vaultier M, Carrie R. Tetrahedron Lett. 1989; 30: 4815
    • 7f Fontani P, Carboni B, Vaultier M, Maas G. Synthesis 1991; 605
    • 7g Fujioka Y, Amii H. Org. Lett. 2008; 10: 769
    • 7h He J, Jiang H, Takise R, Zhu RY, Chen G, Dai HX, Dhar T, Shi J, Zhang H, Cheng PT. Angew. Chem. Int. Ed. 2016; 55: 785
    • 7i Hussain MM, Li H, Hussain N, Ureña M, Carroll PJ, Walsh PJ. J. Am. Chem. Soc. 2009; 131: 6516
    • 7j Liskey CW, Hartwig JF. J. Am. Chem. Soc. 2013; 135: 3375
    • 7k Markó IE, Giard T, Sumida S, Gies A.-E. Tetrahedron Lett. 2002; 43: 2317
    • 7l Markó IE, Kumamoto T, Giard T. Adv. Synth. Catal. 2002; 344: 1063
    • 7m Miyamura S, Araki M, Suzuki T, Yamaguchi J, Itami K. Angew. Chem. Int. Ed. 2015; 54: 846
    • 8a Imai T, Mineta H, Nishida S. J. Org. Chem. 1990; 55: 4986
    • 8b Luithle JE. A, Pietruszka J. J. Org. Chem. 1999; 64: 8287
  • 9 Carreras J, Caballero A, Pérez PJ. Angew. Chem. Int. Ed. 2018; 57: 2334
  • 10 Zimmer LE, Charette AB. J. Am. Chem. Soc. 2009; 131: 15624
    • 11a Charette AB, Beauchemin A. Org. React. (N.Y.) 2001; 58: 1
    • 11b Charette AB, Juteau H. J. Am. Chem. Soc. 1994; 116: 2651

      For a related preparation of cyclopropane building blocks, see:
    • 12a Chawner SJ, Cases-Thomas MJ, Bull JA. Eur. J. Org. Chem. 2017; 5015
    • 12b Bajaj P, Sreenilayam G, Tyagi V, Fasan R. Angew. Chem. Int. Ed. 2016; 55: 16110
  • 13 Hohn E, Paleček J, Pietruszka J, Frey W. Eur. J. Org. Chem. 2009; 3765
    • 14a Uno BE, Gillis EP, Burke MD. Tetrahedron 2009; 65: 3130
    • 14b Morrill C, Grubbs RH. J. Org. Chem. 2003; 68: 6031
    • 15a Molander GA, Biolatto B. J. Org. Chem. 2003; 68: 4302
    • 15b Molander GA, Canturk B, Kennedy LE. J. Org. Chem. 2008; 74: 973
    • 15c Molander GA, Gormisky PE. J. Org. Chem. 2008; 73: 7481
  • 16 Lennox AJ. J. Organotrifluoroborate Preparation. In Organotrifluoroborate Preparation, Coupling and Hydrolysis. Springer; Heidelberg: 2013: 11-36
  • 17 Maiti G, Roy SC. Tetrahedron Lett. 1997; 38: 495
    • 18a Coutts SJ, Adams J, Krolikowski D, Snow RJ. Tetrahedron Lett. 1994; 35: 5109
    • 18b Snow RJ, Bachovchin WW, Barton RW, Campbell SJ, Coutts SJ, Freeman DM, Gutheil WG, Kelly TA, Kennedy CA. J. Am. Chem. Soc. 1994; 116: 10860
    • 18c Coutts SJ, Kelly TA, Snow RJ, Kennedy CA, Barton RW, Adams J, Krolikowski DA, Freeman DM, Campbell SJ, Ksiazek JF. J. Med. Chem. 1996; 39: 2087
    • 18d Kinder DH, Katzenellenbogen JA. J. Med. Chem. 1985; 28: 1917
    • 18e Matteson DS, Jesthi PK, Sadhu KM. Organometallics 1984; 3: 1284
    • 18f Martichonok V, Jones JB. J. Am. Chem. Soc. 1996; 118: 950
    • 18g Martin R, Jones JB. Tetrahedron Lett. 1995; 36: 8399
  • 19 Gonzalez JA, Ogba OM, Morehouse GF, Rosson N, Houk KN, Leach AG, Cheong PH. Y, Burke MD, Lloyd-Jones GC. Nat. Chem. 2016; 8: 1067
  • 21 Zhao J, Jonker SJ. T, Meyer DN, Schulz G, Tran CD, Eriksson L, Szabò KJ. Chem. Sci. 2018; 9: 3305
  • 22 Collins KD, Glorius F. Nat. Chem. 2013; 5: 597
    • 23a Bobbitt JM. Periodate Oxidation of Carbohydrates . In Advances in Carbohydrate Chemistry, Vol. 11. Wolfrom ML, Tipson RS. Elsevier; Amsterdam: 1956: 1-41
    • 23b Copéret C, Adolfsson H, Khuong T.-AV, Yudin AK, Sharpless KB. J. Org. Chem. 1998; 63: 1740
    • 24a Chemler SR, Trauner D, Danishefsky SJ. Angew. Chem. Int. Ed. 2001; 40: 4544
    • 24b Miyaura N, Suzuki A. Chem. Rev. 1995; 95: 2457
    • 24c Molander GA, Jean-Gérard L. Org. React. 2013; 79: 1
  • 25 Gillis EP, Burke MD. Aldrichimica Acta 2009; 42: 17
  • 26 Duncton MA. J, Singh R. Org. Lett. 2013; 15: 4284
  • 27 Shriver DF, Drezdzon MA. The Manipulation of Air-Sensitive Compounds, 2nd ed. Wiley; New York: 1986
  • 28 Wang K, Bates RW. Synthesis 2017; 49: 2749
  • 29 Charette AB, Juteau H, Lebel H, Molinaro C. J. Am. Chem. Soc. 1998; 120: 11943
  • 30 Nicolaou KC, Rhoades D, Lamani M, Pattanayak MR, Kumar SM. J. Am. Chem. Soc. 2016; 138: 7532
  • 31 Joliton A, Plancher JM, Carreira EM. Angew. Chem. Int. Ed. 2016; 55: 2113
  • 32 Ohtsuka N, Okuno M, Hoshino Y, Honda K. Org. Biomol. Chem. 2016; 14: 9046
  • 33 Kumpulainen ET. T, Pohjakallio A. Adv. Synth. Catal. 2014; 356: 1555