Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2019; 30(13): 1546-1550
DOI: 10.1055/s-0037-1611879
DOI: 10.1055/s-0037-1611879
letter
Synthesis of New 7,8-Dioxa[6]helicenes with Triazole Rings as Potential Molecular Tweezers
We thank to Istanbul Technical University for financial support.Further Information
Publication History
Received: 26 March 2019
Accepted after revision: 12 June 2019
Publication Date:
10 July 2019 (online)
Abstract
This study introduces new triazole-linked host compounds, which have been synthesized from 7,8-dioxa-bisnaphthalene and 7,8-dioxa[6]helicenes. These compounds have different cavities depending on being ‘v’-shaped or helicene structures. The dimeric structure of 7,8-dioxa-bisnaphthalene has also been obtained and crystal structure analysis confirmed that it contains an unusual seven-membered dihydrooxepine ring. All synthesized compounds can act as molecular tweezers for organic molecules and also metal ions.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1611879.
- Supporting Information
-
References and Notes
- 1a Ortalan AO, Caramori GF, Parreira RL, Munoz-Castro A. ChemPhysChem 2018; 19: 2321
- 1b Barroso J, Murillo F, Martinez-Guajardo G, Ortiz-Chi F, Pan S, Fernandes-Herrera MA, Merino G. ChemPhysChem 2018; 24: 11227
- 1c Tsujihara T, Endo S, Takehara T, Suzuki T, Tamura S, Kawano T. Tetrahedron Lett. 2018; 59: 2450
- 1d Gringas M. Chem. Soc. Rev. 2013; 42: 1051
- 2a Shahabuddin M, Miah MdJ, Limura K, Kimura T, Karikomi M. Tetrahedron Lett. 2017; 58: 1334
- 2b Hasan M, Khose VN, Mori T, Borovkov V, Karnik AV. ACS Omega 2017; 592
- 2c Hasan M, Khose VN, Pandey AD, Borovkov V, Karnik AV. Org. Lett. 2016; 18: 440
- 3a Yao H, Sun J, Ke H, Yang L, Jiarong L, Wei J. Chinese J. Org. Chem. 2017; 37: 603
- 3b Shorthill BJ, Avetta CT, Glass TE. J. Am. Chem. Soc. 2004; 126: 12732
- 3c Avetta CT, Shorthill BJ, Ren C, Glass TE. J. Org. Chem. 2012; 77: 851
- 4 Hasan M, Pandey AD, Khose VN, Mirgane NA, Karnik AV. Eur. J. Org. Chem. 2015; 3702
- 5 Lande ND, Shewale MN, Gejji SP. J. Phys. Chem. 2017; 121: 3792
- 6 Krebs FC, Faldt A, Thorup N, Bechgaard K. CrystEngComm 1999; 6: 1
- 7 Eskildsen J, Krebs FC, Faldt A, Sommer-Larsen P, Bechgaard K. J. Org. Chem. 2001; 66: 200
- 8 Sato H, Shizuma M. J. Oleo Sci. 2008; 57: 503
- 9a Tunca AA, Talinli N, Akar A. Tetrahedron 1995; 51: 2109
- 9b Odabas Z, Talinli N. Heterocycl. Commun. 2000; 6: 437
- 10 Mathur D, Rana N, Olsen CE, Parmar VS, Prasad AK. J. Heterocycl. Chem. 2015; 52: 701
- 11 Hein JE, Fokin VV. Chem. Soc. Rev. 2010; 39: 1302
- 12 Cheung KP. S, Tsui GC. Org. Lett. 2017; 19: 2881
- 13 Gaussian 16, Revision A.03, Frisc MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA. Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ. Gaussian, Inc.. Wallingford CT: 2016
- 14 Havlık M, Kral V, Kaplanek R, Dolensky B. Org. Lett. 2008; 10: 4767
- 15 Murphy RB, Pham D.-T, White JM, Lincoln SF, Johnston MR. Org. Biomol. Chem. 2018; 16: 6206
- 16 Colasson B, Le Poul N, Le Mest Y, Reinaud O. Inorg. Chem. 2011; 50: 10985
- 17 Legouin B, Gayral M, Uriac P, Cupif J-F, Levoin N, Toupet L, Van de Weghe P. Eur. J. Org. Chem. 2010; 5503
- 18 Pardo C, Sesmilo E, Gutierrrez-Puebla E, Monge A, Elguero J, Fruchier A. J. Org. Chem. 2001; 66: 1607
- 19 4,4',4'',4'''-((((11as,18cr)-11a,18c-(epoxy[1,2]naphthaleno)naph- tho[2,1-b]naphtho[1',2':4,5]furo[3,2-d]naphtho[1',2':4,5]- furo[3,2-f]oxepine-3,6,17,26-tetrayl)tetrakis(oxy))tetrakis- (methylene))tetrakis(1-benzyl-1H-1,2,3-triazole) 4,10,11 Compound 9 (2.5 g, 1 equiv) was dissolved in dry CCl4 (260 mL). NBS (1.07 g, 1.2 equiv) was added and the resulting solution was heated to 90 °C under a nitrogen atmosphere and irradiated with 360 nm UV light for 24 h. The elimination of HBr gas was observed within 3 h and confirmed with wet pH paper. The reaction progress was also monitored by TLC. When gas evolution ended and the starting material consumed, the mixture was cooled to r.t. and filtered to seperate insoluble succinimide. The solvent was removed, and the crude reaction mixture was not purified and directly hydrolyzed. After the hydrolization step, compound 10 was isolated by column chromatography (EtOAc/acetone/n-hexane 10:30:60) with a yield of 12%. Then, an etherification reaction (general procedure in the Supporting Information) with propargyl bromide (0.2 mL, 2.2 equiv) was performed with the residual mixture. Without any purification, a 1,3-dipolar cycloaddition reaction (general procedure in the Supporting Information) was carried out with benzyl azide (0.042 mL, 2.3 equiv) in the presence of Cu(I)Br (0.01g, 0.5 equiv) and PMDETA (0.015 mL, 0.5 equiv) and the crude mixture was purified by column chromatography (EtOAc/acetone/n-hexane 10:30:60) to afford compound 13 in 28% yield (0.27 g according to compound 9). Light yellow crystals; mp > 300 °C. IR: 2953, 2920, 2851, 1627, 1519, 1456, 1204, 1012, 829, 708 cm–1. 1H NMR (500 MHz, DMSO-d6 ): δ = 8.09–6.66 (m, 44 H, Ar), 5.49 (s, 6 H, CH2Ar), 5.38 (s, 2 H, CH2-Ar), 5.03 (d, J = 11.0 Hz, 1 H, O-CH2), 4.86 (d, J = 11.5 Hz, 1 H, O-CH2), 4.45 (d, J = 11.5 Hz, 1 H, O-CH2), 4.27 (d, J = 12.5 Hz, 2 H, O-CH2), 4.14 (d, J = 11.5 Hz, 1 H, O-CH2), 3.98 (d, J = 11.5 Hz, 2 H, O-CH2). 13C NMR (125 MHz, DMSO-d6 ): δ = 170.8, 165.5, 158.0–148.2 (9C), 144.3–142.1 (5C), 136.2–130.2 (6C), 129.9–121.0 (20C), 119.5–102.9 (10C), 68.9, 68.1, 67.6, 65.9, 63.7, 56.2, 53.3, 53.27, 53.24.
- 20 Sheldrick GM. Acta Crystallogr., Sect. C. 2015; 71: 3
- 21 Sheldrick GM. SHELXS-97 and SHELXL-97 Programs for the refinement of crystal structures. University of Göttingen; Germany: 1997
- 22 Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JA. K, Puschmann H. J. Appl. Crystallogr. 2009; 42: 339 ; OLEX2, A Complete Structure Solution, Refinement and Analysis Program
- 23 Allen FH, Kennard O, Watson DG, Brammer L, Orpen AG, Taylor R. J. Chem. Soc., Perkin Trans. 2 1987; 12: 1