Synlett
DOI: 10.1055/s-0037-1611864
letter
© Georg Thieme Verlag Stuttgart · New York

Iron-Catalyzed Regioselective Decarboxylative Alkylation of Coumarins and Chromones with Alkyl Diacyl Peroxides

Can Jin
a  College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   Email: jincan@zjut.edu.cn
,
Xun Zhang
a  College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   Email: jincan@zjut.edu.cn
,
Bin Sun
b  Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   Email: sunbin@zjut.edu.cn
,
Zhiyang Yan
a  College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   Email: jincan@zjut.edu.cn
,
Tengwei Xu
a  College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   Email: jincan@zjut.edu.cn
› Author Affiliations
We thank the National Natural Science Foundation of China (Grant No. 21606202) for financial support. We are also grateful to the College of Pharmaceutical Sciences, Zhejiang University of Technology and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals for the financial help.
Further Information

Publication History

Received: 01 May 2019

Accepted after revision: 26 May 2019

Publication Date:
26 June 2019 (eFirst)

Abstract

A facile iron-catalyzed decarboxylative radical coupling of alkyl diacyl peroxides with coumarins or chromones has been developed, affording a highly efficient approach to synthesize a variety of α-alkylated coumarins and β-alkylated chromones. The reaction proceeded smoothly without adding any ligand or additive and provided the corresponding products containing a wide scope of functional groups in moderate to excellent yields. This protocol was highlighted by its high regioselectivity, readily available starting materials, and operational simplicity.

Supporting Information

 
  • References and Notes

    • 1a Musa MA, Cooperwood JS, Khan M, Omar F. Curr. Med. Chem. 2008; 15: 2664
    • 1b Spino C, Dodier M, Sotheeswaran S. Bioorg. Med. Chem. Lett. 1998; 8: 3475
    • 1c Wang XH, Bastow KF, Sun CM, Lin YL, Yu HJ, Don MJ, Wu TS, Nakamura S, Lee KH. J. Med. Chem. 2004; 47: 5816
    • 2a Li CJ. Acc. Chem. Res. 2009; 42: 335
    • 2b Yeung CS, Dong MV. Chem. Rev. 2011; 111: 1215
    • 2c Cho SH, Kwak J, Chang S. Chem. Soc. Rev. 2011; 40: 5068
    • 2d Sun B, Wang Y, Li DY, Jin C, Su WK. Org. Biomol. Chem. 2018; 16: 2902
    • 2e Sun B, Yin S, Zhuang XH, Jin C, Su WK. Org. Biomol. Chem. 2018; 16: 6017
    • 2f Sun B, Deng JC, Li DY, Jin C, Su WK. Tetrehedron Lett. 2018; 59: 4364
    • 2g Sun B, Yan ZY, Jin C, Su WK. Synlett. 2018; 29: 2432
    • 2h Lv YH, Li Y, Xiong T, Lu Y, Liu Q, Zhang Q. Chem. Commun. 2014; 50: 2367
    • 2i Vogl O, Rondestvedt CS. J. Am. Chem. Soc. 1954; 77: 3067
    • 2j Zhao WN, Xu L, Ding YC, Niu B, Xie P, Bian ZG, Zhang DH, Zhou AH. Eur. J. Org. Chem. 2016; 325
    • 3a Khoobi M, Alipour M, Zarei S, Jafarpour F, Shafiee A. Chem. Commun. 2012; 48: 2985
    • 3b Min M, Hong S. Chem. Commun. 2012; 48: 9613
    • 3c Jafarpour F, Barzegar M, Olia A, Hazrati H. Adv. Synth. Catal. 2013; 355: 3407
    • 4a Nibbs AE, Scheidt K. Eur. J. Org. Chem. 2012; 449
    • 4b Samanta R, Narayan R, Antonchick AP. Org. Lett. 2012; 14: 6108
    • 4c Chen G, Tokunaga N, Hayashi T. Org. Lett. 2005; 7: 2285
  • 5 Kim K, Choe H, Jeong Y, Lee JH, Hong S. Org. Lett. 2015; 17: 2550
  • 6 Dian LY, Zhao H, Zhang-Negrerie D, Du YF. Adv. Synth. Catal. 2016; 358: 2422
    • 7a Banerjee A, Santra SK, Khatun N, Ali W, Patel BK. Chem. Commun. 2015; 51: 15422
    • 7b Niu B, Zhao WN, Ding YC, Bian ZG, Pittman CU. Jr, Zhou AH, Ge HB. J. Org. Chem. 2015; 80: 7251
    • 7c Doan SH, Nguyen VH. H, Nguyen TH, Pham PH, Nguyen NN, Phan AN. Q, Tu TN, Phan NT. S. RSC Adv. 2018; 8: 10736
    • 8a Banerjee A, Santra SK, Mishra A, Khatun N, Patel BK. Org. Biomol. Chem. 2015; 13: 1307
    • 8b Zhou SL, Guo LN, Duan XH. Eur. J. Org. Chem. 2014; 8094
    • 8c Zhu YF, Wei YY. Chem. Sci. 2014; 5: 2379
    • 8d Wang CY, Mi X, Li QR, Li YB, Huang MM, Zhang JY, Wu YS, Wu YJ. Tetrahedron 2015; 71: 6689
  • 9 Narayan R, Antonchick AP. Chem. Eur. J. 2014; 20: 4568
  • 10 Jafarpour F, Darvishmolla M. Org. Biomol. Chem. 2018; 16: 3396
  • 11 Jin C, Yan ZY, Sun B, Yang J. Org. Lett. 2019; 21: 2064
    • 12a Pan CD, Fu Y, Ni QT, Yu JT. J. Org. Chem. 2017; 82: 5005
    • 12b Cui ZH, Du DM. J. Org. Chem. 2018; 83: 5149
    • 12c Qian B, Chen S, Wang WT, Zhang XH, Bao HL. J. Am. Chem. Soc. 2017; 139: 13076
    • 12d Zhu XT, Deng WL, Chiou MF, Ye CQ, Jian WJ, Zeng YH, Jiao YH, Ge L, Li YJ, Zhang XH, Bao HL. J. Am. Chem. Soc. 2019; 141: 548
    • 12e Deng WL, Feng WW, Li YJ, Bao HL. Org. Lett. 2018; 20: 4245
    • 12f Jian WJ, Ge L, Jiao YH, Qian B, Bao HL. Angew. Chem. Int. Ed. 2017; 56: 3650
    • 12g Babu KR, Zhu NB, Bao HL. Org. Lett. 2017; 19: 46
    • 12h Yu F, Wang T, Zhou H, Li YJ, Zhang XH, Bao HL. Org. Lett. 2017; 19: 6538
    • 12i Kawamura S, Henderson CJ, Aoki Y, Sekine D, Kobayashi S, Sodeoka M. Chem. Commun. 2018; 54: 11276
  • 13 General Procedure for the Synthesis of 3 or 5 (3aa as an Example) A 10 mL Schlenk tube was charged with coumarin (1a, 88 mg, 0.6mmol), LPO (2a, 477 mg, 1.2 mmol), Fe(OTf)3 (15 mg, 0.03 mmol), and dioxane (3.0 mL). The tube was evacuated and backfilled with N2 for three times. The mixture was then heated at 70 ℃ and stirred for 8 h. After the reaction finished, the reaction mixture was extracted with DCM (30 mL). The organic layer was dried over Na2SO4 and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel column (ethyl acetate/hexane, 1:80) to afford 3aa (149 mg, 83%) as a white solid. Compound 3aa: white solid; mp 59.6–60.3 ℃, 83% (149 mg). 1H NMR (400 MHz, CDCl3): δ = 7.47 (s, 1 H), 7.45–7.42 (m, 2 H), 7.31 (d, J = 8.0 Hz, 1 H), 7.26 (d, J = 8.0 Hz, 1 H), 2.56 (t, J = 7.8 Hz, 2 H), 1.68–1.60 (m, 2 H), 1.39–1.25 (m, 16 H), 0.88 (t, J = 6.8 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 161.8, 153.1, 138.3, 130.4, 130.1, 127.1, 124.2, 119.6, 116.4, 31.9, 30.8, 29.63, 29.60, 29.56, 29.4, 29.3, 28.0, 22.7, 14.1. HRMS: m/z calcd for C20H29O2 [M + H]+: 301.2162; found: 301.2170.