Synlett 2019; 30(12): 1452-1456
DOI: 10.1055/s-0037-1611859
letter
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Triazole-Fused Phenanthridines through Pd-Catalyzed Intramolecular Phenyl C–H Activation of 1,5-Diaryl-1,2,3-triazoles

Jiazhuang Wang
,
Jianhua Yang
,
Xuxin Fu
,
Guiping Qin
,
Tiebo Xiao
Faculty of Science, Kunming University of Science and Technology, South Jingming Road 727, Kunming 650500, P. R. of China   eMail: xiaotb@kmust.edu.cn   eMail: ybjiang@kmust.edu.cn
,
Yubo Jiang
Faculty of Science, Kunming University of Science and Technology, South Jingming Road 727, Kunming 650500, P. R. of China   eMail: xiaotb@kmust.edu.cn   eMail: ybjiang@kmust.edu.cn
› Institutsangaben
The authors like to thank the National Natural Science Foundation of China (No. 21662020) for the financial support.
Weitere Informationen

Publikationsverlauf

Received: 01. Mai 2019

Accepted after revision: 20. Mai 2019

Publikationsdatum:
19. Juni 2019 (online)


§Both authors contributed equally.

Abstract

An efficient method for the synthesis of triazole-fused phenanthridines from 1,5-diaryl-1,2,3-triazoles under palladium catalysis has been developed. The reaction proceeds through Pd-catalyzed intramolecular phenyl C–H activation of 1,5-diaryl-1,2,3-triazoles. This method provides a concise and efficient pathway to construct triazolo[1,5-f]phenanthridine derivatives in excellent yields.

Supporting Information

 
  • References and Notes

  • 1 Pictet A, Ankersmit HJ. Justus Liebigs Ann. Chem. 1891; 266: 138
  • 2 Calder E, McGonagle F, Harkiss A, McGonagle G, Sutherland A. J. Org. Chem. 2014; 79: 7633
    • 3a Cheng P, Qing Z, Liu S, Liu W, Xie H, Zeng J. Tetrahedron Lett. 2014; 55: 6647
    • 3b Lasák P, Motyka K, Kryštof V, Stýskala J. Molecules 2018; 23: 2155
    • 3c Steinhauer T, Girreser U, Meier C, Cushman M, Clement B. Chem. Eur. J. 2016; 22: 8301
    • 4a Zhao D, Tang X, Liu X, Fan J, Liao L. Org. Electron. 2017; 50: 473
    • 4b Liu M, Liang Y, Chen P, Chen D, Liu K, Li Y, Liu S, Gong X, Huang F, Su S, Cao Y. J. Mater. Chem. A 2014; 2: 321
    • 4c Yuvaraj AR, Renjith Anu. Kumar S. 2018; 272: 583
    • 4d Balijapalli U, Udayadasan S, Shanmugam E, Kulathu Iyer S. Dyes Pigm. 2016; 130: 233
    • 5a Wu D, Fang B, Zhang M, Du W, Zhang J, Tian X, Zhang Q, Zhou H, Wu J, Tian Y. Dyes Pigm. 2018; 159: 142
    • 5b Chen H, Long H, Cui X, Zhou J, Xu M, Yuan G. J. Am. Chem. Soc. 2014; 136: 2583
    • 6a Romo-Pérez A, Miranda L, García A. Tetrahedron Lett. 2015; 56: 6669
    • 6b Strmiskova M, Bilodeau D, Chigrinova M, Pezacki J. Can. J. Chem. 2019; 97: 1
    • 7a Rafiee F. Appl. Organomet. Chem. 2017; 31: 3820
    • 7b Sun X, Yu S. Org. Lett. 2014; 16: 2938
    • 7c Cheng Y, Jiang H, Zhang Y, Yu S. Org. Lett. 2013; 15: 5520
    • 7d Jiang H, Cheng Y, Wang R, Zheng M, Zhang Y, Yu S. Angew. Chem. Int. Ed. 2013; 52: 13289
    • 7e Cai J, Hu Z, Li Y, Liu J, Xu X. Adv. Synth. Catal. 2018; 360: 3595
    • 7f Zhu Z, Chen K, Xu Q, Shi M. Adv. Synth. Catal. 2015; 357: 3081
    • 7g Fan-Chiang T.-T, Wang H.-K, Hsieh J.-C. Tetrahedron 2016; 72: 5640
    • 7h Elsayeda M, Zellerb M, Cushman M. Synth. Commun. 2016; 46: 1902
    • 7i Mehrabi H, Pishahang J. Synth. Commun. 2014; 44: 76
    • 8a Wang X, Huang B, Liu X, Zhan P. Drug Discovery Today 2016; 21: 118
    • 8b Bua S, Osman S, Del Prete S, Capasso C, AlOthman Z, Nocentini A, Supuran C. Bioorg. Chem. 2019; 86: 183
    • 8c Song M, Deng X. J. Enzym. Inhib. Med. Chem. 2018; 33: 453
    • 8d Shiva Raju K, AnkiReddy S, Sabitha G, Siva KVagolu, Siram D, Bharathi ReddyK, Rao SagurthiS. Bioorg. Med. Chem. Lett. 2019; 29: 284
    • 8e Thanh N, Hai D, Ngoc Bich V, Thu Hien P, Ky Duyen N, Mai N, Dung T, Toan V, Kim Van H, Dang L, Toan D, Thanh Van T. Eur. J. Med. Chem. 2019; 167: 454
    • 8f Faidallah H, Panda S, Serrano J, Girgis A, Khan K, Alamry K, Therathanakorn T, Meyers M, Sverdrup F, Eickhoff C, Getchell S, Katritzky A. Bioorg. Med. Chem. 2016; 24: 3527
    • 8g Niu C, Lu X, Aisa H. RSC Adv. 2019; 9: 1671
    • 8h Krawczyk M, Pastuch-Gawolek G, Mrozek-Wilczkiewicz A, Kuczak M, Skonieczna M, Musiol R. Bioorg. Chem. 2019; 84: 326
    • 9a Liu Yi, He C, Tang Y, Imler G, Parrish D, Shreeve J. Dalton Trans. 2019; 48: 3237
    • 9b Peng R, Xu Y, Cao Q. Chin. Chem. Lett. 2018; 29: 1465
    • 9c He M, Li W, Tian H, Tong H, Zhang J, Liu J, Xie Z, Geng Y, Wang F. Org. Electron. 2019; 65: 31
    • 9d Tanimu A, Jillani S, Alluhaidan A, Ganiyu S, Alhooshani K. Talanta 2019; 194: 377
    • 9e Nguyen M, Byun J, Kim S, Hyun J, Hur K, Shin T, Cho B. Angew. Chem. Int. Ed. 2019; 58: 2749
    • 9f Li P, Wang X, Zhao Y. Coord. Chem. Rev. 2019; 380: 484
    • 10a Sadjadi S, Heravi M, Malmir M, Noritajer F. Mater. Chem. Phys. 2019; 223: 380
    • 10b Zurro M, Mancheno O. Chem. Rec. 2017; 17: 485
    • 10c Hosseinnejad T, Ebrahimpour-Malmir F, Fattahi B. RSC Adv. 2018; 8: 12232
    • 10d Chen A, Samankumara L, Dodlapati S, Wang D, Adhikari S, Wang G. Eur. J. Org. Chem. 2019; 1189
    • 10e Guisado-Barrios G, Soleilhavoup M, Bertrand G. Acc. Chem. Res. 2018; 51: 3236
    • 10f Wang Z, Li B, Zhang X, Fan X. J. Org. Chem. 2016; 81: 6357
    • 10g Gangaprasad D, Paul Raj J, Karthikeyan K, Rengasamy R, Elangovan J. Adv. Synth. Catal. 2018; 360: 4485
    • 10h Pericherla K, Jha A, Khungar B, Kumar A. Org. Lett. 2013; 15: 4304
    • 11a Johansson J, Beke-Somfai T, Stålsmeden A, Kann N. Chem. Rev. 2016; 116: 14726
    • 11b Alonso F, Moglie Y, Radivoy G. Acc. Chem. Res. 2015; 48: 2516
    • 11c Hein J, Fokin V. Chem. Soc. Rev. 2010; 39: 1302
    • 11d Rostovtsev V, Green L, Fokin V, Sharpless K. Angew. Chem. Int. Ed. 2002; 41: 2596
    • 12a Johansson J, Beke-Somfai T, Stalsmeden A, Kann N. Chem. Rev. 2016; 116: 14726
    • 12b Hosseinnejad T, Mandavian S. Comput. Theor. Chem. 2018; 1143: 29
    • 12c Liu P, Clark R, Zhu L. J. Org. Chem. 2018; 83: 5092
    • 12d Engholm E, Stuhr-Hansen N, Blixt O. Tetrahedron Lett. 2017; 58: 2272
    • 12e Boren B, Narayan S, Rasmussen L, Zhang L, Zhao H, Lin Z, Jia G, Fokin V. J. Am. Chem. Soc. 2008; 130: 8923
    • 13a Ackermann L, Althammer A, Born R. Angew. Chem. Int. Ed. 2006; 45: 2619
    • 13b Zhao F, Liu Y, Yang S, Xie K, Jiang Y. Org. Chem. Front. 2017; 4: 1112
    • 13c Gu Q, Al Mamari H, Grczyk K, Diers E, Ackermann L. Angew. Chem. Int. Ed. 2014; 53: 3868
    • 13d Shang R, Ilies L, Nakamura E. Chem. Rev. 2017; 117: 9086
    • 13e Bauer M, Wang W, Lorion M, Dong C, Ackermann L. Angew. Chem. Int. Ed. 2018; 57: 203
    • 13f He P, Tian Q, Kuang C. Org. Biomol. Chem. 2015; 13: 7146
    • 13g Fruchey E, Monks B, Cook S. J. Am. Chem. Soc. 2014; 136: 13130
    • 13h Wang Z, Tian Q, Yu X, Kuang C. Adv. Synth. Catal. 2014; 356: 961
    • 13i Zhao F, Chen Z, Ma X, Huang S, Jiang Y. Tetrahedron Lett. 2017; 58: 614
    • 13j Shi S, Kuang C. J. Org. Chem. 2014; 79: 6105
    • 13k Wang Z, Kuang C. Adv. Synth. Catal. 2014; 356: 1549
    • 13l Tian Q, Chen X, Liu W, Wang Z, Shi S, Kuang C. Org. Biomol. Chem. 2013; 11: 7830
  • 14 Liu Z, Zhu D, Luo B, Zhang N, Liu Q, Hu Y, Pi R, Huang P, Wen S. Org. Lett. 2014; 16: 5600
  • 15 Kumara A, Shindea S, Tiwaria D, Sridharb B, Likhar P. RSC Adv. 2016; 6: 43638
  • 16 Wang Q, Shi X, Zhang X, Fan X. Org. Biomol. Chem. 2017; 15: 8529
  • 17 Hadj Mokhtar H, Laidaoui N, El Abed D, Soule J, Doucet H. Catal. Commun. 2017; 92: 124
  • 18 CCDC 1857225 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 19 Synthesis of Triazolophenanthridines 2; General Procedure To a 50 mL pressure tube, 1,5-diaryl-1,2,3-triazole were added 1 (0.3 mmol), Pd(OAc)2 (0.03 mmol), PCy3 (0.06 mmol), CsOPiv (0.9 mmol), and toluene (2 mL) and the reaction mixture was stirred at 130 °C for 24 h. After consumption of the 1,5-disubstitued 1,2,3-triazoles monitored by TLC analysis, the mixture was treated with H2O (15 mL) and extracted with EtOAc (3 × 15 mL). The combined organic layers were washed with brine (3 × 5 mL), dried with Na2SO4, and concentrated under reduced pressure to afford a crude product. Purification by column chromatography on silica gel with EtOAc-PE (1:8) afforded the desired products 2.9-Methyl-[1,2,3]triazolo[1,5-f]phenanthridine (2a)White solid; yield: 65 mg (93%); mp 159.8–160.8 °C. IR (KBr): 3066, 2946, 2841, 1731, 1620, 1555, 1494, 1448, 1207, 1124, 1074, 1014, 826, 760, 584 cm–1. 1H NMR (600 MHz, CDCl3): δ = 8.64 (d, J = 8.4 Hz, 1 H), 8.39 (s, 1 H), 8.35 (d, J = 8.0 Hz, 1 H), 8.16 (s, 1 H), 8.10–8.03 (m, 1 H), 7.69–7.63 (m, 1 H), 7.61 (dd, J = 10.8, 4.1 Hz, 1 H), 7.51 (d, J = 8.3 Hz, 1 H), 2.58 (s, 3 H). 13C NMR (150 MHz, CDCl3): δ = 137.3, 131.3, 130.8, 129.2, 129.0, 128.6, 127.3, 127.2, 124.8, 123.5, 123.0, 121.9, 121.9, 116.9, 21.7. HRMS (ESI+): m/z [M + H]+ calcd for C15H12N3: 234.1026; found: 234.1031.[1,2,3]Triazolo[1,5-f]phenanthridine (2b)White solid; yield: 62 mg (95%); mp 187.2–188.4 °C. IR (KBr): 3047, 2944, 2843, 1944, 1790, 1724, 1617, 1558, 1447, 1220, 1125, 976, 822, 747, 526 cm–1. 1H NMR (600 MHz, CDCl3): δ = 8.75–8.73 (m, 1 H), 8.39–8.37 (m, 1 H), 8.36–8.33 (m, 1 H), 8.32–8.30 (m, 1 H), 8.04–8.01 (m, 1 H), 7.71–7.67 (m, 1 H), 7.65–7.57 (m, 3 H). 13C NMR (150 MHz, CDCl3): δ = 131.4, 130.8, 129.5, 129.3, 128.6, 127.3, 127.2, 127.1, 124.6, 123.5, 122.9, 121.9, 121.6, 117.0. HRMS (ESI+): m/z [M + H]+ calcd for C14H10N3: 220.0869; found: 220.0872.11-Methyl-[1,2,3]triazolo[1,5-f]phenanthridine (2c)White solid; yield: 60 mg (86%); mp 142.1–143 °C. IR (KBr): 3045, 2948, 2849, 1957, 1786, 1710, 1623, 1564, 1512, 1449, 1393, 1226, 1126, 1079, 971, 854, 810, 756, 566 cm–1. 1H NMR (600 MHz, CDCl3): δ = 8.39 (dd, J = 3.0, 1.5 Hz, 1 H), 8.34 (t, J = 8.2 Hz, 1 H), 8.28 (t, J = 7.8 Hz, 1 H), 8.04 (dd, J = 9.2, 4.6 Hz, 1 H), 7.64–7.57 (m, 2 H), 7.52 (d, J = 2.7 Hz, 1 H), 7.50–7.46 (m, 1 H), 3.17 (s, 3 H). 13C NMR (150 MHz, CDCl3): δ = 133.2, 132.5, 132.5, 130.7, 130.3, 129.2, 128.5, 127.9, 126.5, 125.9, 124.3, 123.3, 123.2, 121.7, 121.3, 25.2. HRMS (ESI+): m/z [M + H]+ calcd for C15H12N3: 234.1026; found: 234.1029.