Synlett 2019; 30(12): 1431-1436
DOI: 10.1055/s-0037-1611857
letter
© Georg Thieme Verlag Stuttgart · New York

1,4-Diazabicyclo[2.2.2]octane-Catalyzed Multicomponent Domino Strategy for the Synthesis of Tetrasubstituted NH-Pyrroles

Xiangqing Chang
,
Xiaofeng Yang
,
College of Pharmaceutical Sciences, Zhejiang University of Technology China and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   Email: chenzhiwei@zjut.edu.cn   Email: weihuizhong@zjut.edu.cn
,
Weihui Zhong*
› Author Affiliations
We are grateful for the National Natural Science Foundation of China (No. 21676253 and No. 21776254) for financial support.
Further Information

Publication History

Received: 25 April 2019

Accepted after revision: 20 May 2019

Publication Date:
07 June 2019 (eFirst)

Abstract

A mild and efficient 1,4-diazabicyclo[2.2.2]octane (DABCO)-catalyzed three-component domino reaction was developed for the synthesis of highly functionalized NH-pyrroles from arylglyoxal monohydrates, enamino esters, and cyclic 1,3-dicarbonyl compounds in 1,4-dioxane at room temperature for 0.5 hours. Various substituted NH-pyrroles were obtained in moderate to good yields.

Supporting Information

 
  • References and Notes

    • 1a De Souza JE. G, Dos Santos FL, Barros-Neto B, Dos Santos CG. De Melo C. P. Synth. Met. 2001; 119: 383
    • 1b Walsh CT, Garneau-Tsodikova S, Howard-Jones AR. Nat. Prod. Rep. 2006; 23: 517
    • 1c Ramanavičius A, Ramanavičienė A, Malinauskas A. Electrochim. Acta 2006; 51: 6025
    • 1d Fan H, Peng J, Hamann MT, Hu J.-F. Chem. Rev. 2008; 108: 264
    • 1e Young IS, Thornton PD, Thompson A. Nat. Prod. Rep. 2010; 27: 1801
  • 2 Bhardwaj V, Gumber D, Abbot V, Dhiman S, Sharma P. RSC Adv. 2015; 5: 15233
    • 3a Alberola A, González Ortega A, Sádaba ML, Sañudo C. Tetrahedron 1999; 55: 6555
    • 3b Elghamry I. Synth. Commun. 2009; 39: 3010
    • 3c Manley J, Kalman M, Conway B, Ball C, Havens J, Vaidyanathan R. J. Org. Chem. 2003; 68: 6447
    • 3d Bellingham R, Carey J, Hussain N, Morgan D, Oxley P, Powling L. Org. Process Res. Dev. 2004; 8: 279
    • 4a Minetto G, Raveglia L, Sega A, Taddei M. Eur. J. Org. Chem. 2005; 2005: 5277
    • 4b Banik B, Samajdar S, Banik I. J. Org. Chem. 2004; 69: 213
    • 4c Zhang L, Zhang J, Ma J, Cheng D.-J, Tan B. J. Am. Chem. Soc. 2017; 139: 1714
    • 4d Handy S, Lavender K. Tetrahedron Lett. 2013; 54: 4377
    • 4e Cranwell PB, O’Brien M, Browne DL, Koos P, Polyzos A, Peña-López M, Ley SV. Org. Biomol. Chem. 2012; 10: 5774
    • 4f Chen J, Wu H, Zheng Z, Jin C, Zhang X, Su W. Tetrahedron Lett. 2006; 47: 5383
    • 5a Matiychuk V, Martyak R, Obushak N, Ostapiuk Y, Pidlypnyi N. Chem. Heterocycl. Compd. (Engl. Transl.) 2004; 40: 1218
    • 5b Trautwein A, Süßmuth R, Jung G. Bioorg. Med. Chem. Lett. 1998; 8: 2381
    • 5c Estévez V, Villacampa M, Menéndez JC. Chem. Commun. 2013; 49: 591
    • 5d Moss TA, Nowak T. Tetrahedron Lett. 2012; 53: 3056
    • 5e Herath A, Cosford ND. P. Org. Lett. 2010; 12: 5182
  • 6 Estévez V, Villacampa M, Menéndez JC. Chem. Soc. Rev. 2014; 43: 4633
    • 7a Touré BB, Hall DG. Chem. Rev. 2009; 109: 4439
    • 7b Dömling A, Wang W, Wang K. Chem. Rev. 2012; 112: 3083
    • 8a Chang X, Zhang X, Chen Z. Org. Biomol. Chem. 2018; 16: 4279
    • 8b Wang J, Zhou R, Zhuang S, Wu A. Tetrahedron 2019; 75: 1590
    • 8c Eftekhari-Sis B, Zirak M, Akbari A. Chem. Rev. 2013; 113: 2958
    • 8d Karamthulla S, Khan MN, Choudhury LH. RSC Adv. 2015; 5: 19724
    • 8e Dhinakaran I, Padmini V, Bhuvanesh N. ACS Comb. Sci. 2016; 18: 236
    • 8f Bunescu A, Wang Q, Zhu J. Org. Lett. 2014; 16: 1756
    • 8g Ma G.-H, Jiang B, Tu X.-J, Ning Y, Tu S.-J, Li G. Org. Lett. 2014; 16: 4504
    • 9a Lin W, Zheng Y.-X, Xun Z, Huang Z.-B, Shi D.-Q. ACS Comb. Sci. 2017; 19: 708
    • 9b Wang H, Liu X, Feng X, Huang Z, Shi D. Green Chem. 2013; 15: 3307
    • 9c Karamthulla S, Pal S, Khan MN, Choudhury LH. Synlett 2014; 25: 1926
    • 9d Masoudi M, Anary-Abbasinejad M. Tetrahedron Lett. 2016; 57: 103
  • 10 Yang X, Chen Z, Zhong W. Eur. J. Org. Chem. 2017; 2017: 2258
    • 11a Chen Z, Bi J, Su W. Chin. J. Chem. 2012; 30: 1845
    • 11b Naidu PS, Kolita S, Sharma M, Bhuyan PJ. J. Org. Chem. 2015; 80: 6381
    • 11c Yang X, Zheng L, Chen Z, Zhong W. Synth. Commun. 2018; 48: 929
    • 11d Jalani HB, Mali JR, Park H, Lee JK, Lee K, Lee K, Choi Y. Adv. Synth. Catal. 2018; 360: 4073
  • 12 Ethyl 4-(4-Hydroxy-2-oxo-2H-chromen-3-yl)-2,5-diphenyl-1H-pyrrole-3-carboxylate (4a); Typical ProcedureA mixture of the 4-hydroxycoumarin (1a; 1 mmol), phenylglyoxal monohydrate (2a; 1 mmol), β-enamino ester 3a (1 mmol), and DABCO (10 mol%) in 1,4-dioxane (5 mL) was stirred at the reflux for 0.5 h. Upon completion of the reaction, the mixture was cooled to r.t. and aq NH4Cl (30 mL) was added. The aqueous phase was extracted with EtOAc (3 × 25 mL). The combined organic extracts were dried (Na2SO4), filtered, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, DCM-MeOH (160:1 v/v)) to give a pale white powder; yield: 338 mg (75%); mp = 209–211 °C.1H NMR (600 MHz, DMSO-d6): δ = 11.88 (s, 1H), 10.94 (s, 1H), 7.85 (d, J = 8.4 Hz, 1H), 7.64 –7.62 (m, 3H), 7.48–7.45 (m, 4H), 7.43–7.38 (m, 2H), 7.35 (t, J = 7.2 Hz, 1H), 7.31 (t, J = 7.2 Hz, 2H), 7.20 (t, J = 7.2 Hz, 1H), 3.93–3.83 (m, 2H), 0.81 (t, J = 7.2 Hz, 3H). 13C NMR (150 MHz, DMSO-d 6): δ = 164.5, 162.6, 161.2, 152.9, 138.0, 132.6, 132.5, 132.4, 132.2, 130.0, 128.8, 128.2, 128.1, 127.4, 127.1, 124.3, 124.0, 116.7, 116.5, 113.4, 112.4, 101.8, 59.1, 14.0. MS (ESI): m/z = 450 [M – H]. HRMS-ESI: m/z [M – H] calcd for C28H20NO5: 450.1347; found: 450.1350.