Synlett 2019; 30(12): 1419-1426
DOI: 10.1055/s-0037-1611855
letter
© Georg Thieme Verlag Stuttgart · New York

A Highly Efficient Magnetic Iron(III) Nanocatalyst for Ferrier Rearrangements

Youxian Dong
,
Zekun Ding
,
Hong Guo
,
Le Zhou
,
Nan Jiang
,
Heshan Chen
,
Saifeng Qiu
,
Xiaoxia Xu
,
School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. of China   Email: jbzhang@chem.ecnu.edu.cn
› Author Affiliations
The project was supported by the Natural Science Foundation of Shanghai (11ZR1410400), large instruments Open Foundation of East China Normal University (20161043) and National Undergraduate Training Program for Innovation and Entrepreneurship (201710269030G).
Further Information

Publication History

Received: 03 April 2019

Accepted after revision: 15 May 2019

Publication Date:
19 June 2019 (eFirst)

Abstract

A novel and highly efficient magnetic Fe3O4@C@Fe(III) core–shell catalyst, in which the carbon shell was prepared from lotus leaf, was fabricated. This nanocatalyst was successfully applied in the synthesis of a series of 2,3-unsaturated O-glycosides in excellent yields and with high selectivity, especially in the case of 2-halo O-glycosides, which differ in reactivity from nonsubstituted O-glycosides, but which have scarcely been explored before. Moreover, the catalyst could be easily separated from the reaction by the application of an external magnetic force and reused a minimum of five times without any significant decrease in the yields of the products. In addition, the reaction proceeded readily on a gram scale, which provides a bright prospect for future applications.

Supporting Information

 
  • References and Notes

  • 1 Park Y, Harper K, Kuhl N, Kwan E, Liu RY, Jacobsen EN. Science 2017; 355: 162
  • 2 Jung HJ, Pamer EG. Nature 2017; 546: 479
  • 3 Thomas TS, Wang WH, Sita LR. Angew. Chem. Int. Ed. 2016; 55: 4683
  • 4 Wang Z, Chinoy ZS, Ambre SG, Peng W, McBride R, De Vries RP, Glushka J, Paulson JC, Boons G.-J. Science 2013; 341: 379
  • 5 Gloster TM, Vocadlo DJ. Nat. Chem. Biol. 2012; 8: 683
  • 6 Gu Z.-y, Zhang X.-t, Zhang J.-x, Xing G.-w. Org. Biomol. Chem. 2013; 11: 5017
  • 7 Lowary TL. Acc. Chem. Res. 2016; 49: 1379
  • 8 Yang Q, An Y, Wang LX. ACS Chem. Biol. 2017; 12: 1665
  • 9 Shao L, Zhang H, Li Y, Gu G, Cai F, Guo Z, Gao J. J. Org. Chem. 2018; 83: 5920
  • 10 Zhang J. In Glycoscience: Chemistry and Chemical Biology I–III (2nd ed). Fraser-Reid BO, Tatsuta K, Thiem J. Springer; Berlin: 2008: 375
  • 11 Li J. In Name Reactions: A Collection of Detailed Reaction Mechanisms (3rd ed). Young DG. J. Springer; Berlin: 2006: 227
  • 12 Ferrier RJ. Top. Curr. Chem. 2001; 215: 153
  • 13 Ferrier RJ, Zubkov OA. In Organic Reactions . Wiley; Weinheim: 2004. DOI:10.1002/0471264180.or062.04
  • 14 Gómez AM, Lobo F, Uriel C, López JC. Eur. J. Org. Chem. 2013; 7221
  • 15 Ram RN, Kumar N, Gupta DK. Adv. Synth. Catal. 2017; 359: 432
  • 16 Saquib M, Husain I, Sharma S, Yadav G, Singh VP, Sharma SK, Shah P, Siddiq MI, Kumar B, Lal J, Jain GK, Srivastava BH, Shaw AK. Eur. J. Med. Chem. 2011; 46: 2217
  • 17 Kusumi S, Wang S, Watanabe T, Sasaki K, Takahashi D, Toshima K. Org. Biomol. Chem. 2011; 8: 988
  • 18 Kusumi S, Sasaki K, Wang S, Watanabe T, Takahashi D, Toshima K. Org. Biomol. Chem. 2010; 8: 3164
  • 19 Di Bussolo V, Kim Y.-J, Gin DY. J. Am. Chem. Soc. 1998; 120: 13515
  • 20 Ding Z, Luo X, Ma Y, Chen H, Qiu S, Sun G, Zhang W, Wu Z, Zhang J. J. Carbohydr. Chem. 2018; 37: 81
  • 21 Sau A, Galan MC. Org. Lett. 2017; 19: 2857
  • 22 Chen P, Su J. Tetrahedron 2016; 72: 84
  • 23 Roy R, Rajasekaran P, Mallick A, Vankar YD. Eur. J. Org. Chem. 2014; 2014: 5564
  • 24 Zhou J, Chen H, Shan J, Yang G, Chen X, Xin K, Zhang J, Tang J. J. Carbohydr. Chem. 2014; 33: 313
  • 25 Zhang J, Zhang B, Zhou J, Chen H, Li J, Yang G, Wang Z, Tang J. J. Carbohydr. Chem. 2013; 32: 380
  • 26 Zhou J, Zhang B, Yang G, Chen X, Wang Q, Wang Z, Zhang J, Tang J. Synlett 2010; 893
  • 27 Zhou J, Chen X, Wang QB, Zhang B, Zhang LY, Yusulf A, Wang ZF, Zhang JB, Tang J. Chin. Chem. Lett. 2010; 21: 922
  • 28 Sun G, Wu Y, Liu A, Qiu S, Zhang W, Wang Z, Zhang J. Synlett 2018; 29: 668
  • 29 Qiu S, Sun G, Ding Z, Chen H, Zhang J. Synlett 2017; 28: 2024
  • 30 Kumar K, Ramulu M, Rajesham B, Kumar N, Voora V, Kancha RK. Org. Biomol. Chem. 2017; 15: 4468
  • 31 Qiu S, Zhang W, Sun G, Wang Z, Zhang J. ChemistrySelect 2016; 1: 4840
  • 32 Li J, Zhang X, Zhang M, Xiu H, He H. Carbohydr. Polym. 2015; 117: 917
  • 33 Zhang L, Yu H, Wang P, Li Y. Bioresour. Technol. 2014; 151: 355
  • 34 Cornil J, Guérinot A, Reymond S, Cossy J. J. Org. Chem. 2013; 78: 10273
  • 35 Guo H., Si W., Li J., Yang G., Tang T., Wang Z., Tang J., Zhang. J.; Synthesis; DOI: 10.1055/s-0037-1611801.
  • 36 Thombal RS, Jadhav VH. RSC Adv. 2016; 6: 30846
  • 37 Ma J.-f, Xing J.-x, Wang K, Yang H.-y, Fei B.-h, Liu X.-e. Carbohydr. Polym. 2017; 164: 127
  • 38 Jin Z, Dong Y, Dong N, Yang Z, Wang Q, Lei Z, Su B. Mater. Lett. 2017; 186: 322
  • 39 Zhang Y, Xue Z, Wang J, Zhao X, Deng Y, Zhao W, Mu T. RSC Adv. 2016; 6: 51229
  • 40 Wu S, Huang J, Zhuo C, Zhang F, Sheng W, Zhu M. J. Inorg. Organomet. Polym. 2016; 26: 632
  • 41 Wang D, Zhou J, Chen R, Shi R, Xia G, Zhou S, Liu Z, Zhang N, Wang H, Guo Z, Chen Q. Biomaterials 2016; 107: 88
  • 42 Fang X, Wang S, Li Y, Liu X, Li X, Lin S, Cui Z.-K, Zhuang Q. RSC Adv. 2016; 6: 107533
  • 43 Chen Z, Geng Z, Zhang Z, Ren L, Tao T, Yang R, Guo Z. Eur. J. Inorg. Chem. 2014; 3172
  • 44 Deng Y, Cai Y, Sun Z, Liu J, Liu C, Wei J, Li W, Liu C, Wang Y, Zhao D. J. Am. Chem. Soc. 2010; 132: 8466
  • 45 Toda M, Takagaki A, Okamura M, Kondo JN, Hayashi S, Domen K, Hara M. Nature 2005; 438: 178
  • 46 Fan J.-P, Zheng B, Qin Y, Yang D, Liao D.-D, Xu X.-K, Zhang X.-H, Zhu J.-H. Appl. Surf. Sci. 2016; 364: 332
  • 47 Kung HH, Kung MC. Catal. Lett. 2014; 144: 1643
  • 48 Zhao X, Shen J, Kim SH. J. Agric. Food Chem. 2014; 62: 6227
  • 49 Huang CF, Chen YW, Yang CY, Ling HY, Way TD, Chiang W, Liu SH. J. Agric. Food Chem. 2011; 59: 1087
  • 50 Li Z, Chen W, Xu H. Guangdong Huagong 2015; 42: 220
  • 51 Xu J, Koopal L, Fang L, Xiong J, Tan W. Environ. Sci. Technol. 2018; 52: 4099
  • 52 Cobo I, Matheu MI, Castillón S, Boutureira O, Davis BG. Org. Lett. 2012; 14: 1728
  • 53 Dharuman S, Vankar YD. Org. Lett. 2014; 16: 1172
  • 54 Shamim A, Vasconcelos S, Ali B, Madureira LS, Zukerman-Schpector J, Stefani HA. Tetrahedron Lett. 2015; 56: 5836
  • 55 Leibeling M, Milde B, Kratzert D, Werz DB. Chem. Eur. J. 2011; 17: 9888
  • 56 Leibeling M, Koester DC, Pawliczek M, Dittrich B, Werz DB. Bioorg. Med. Chem. 2010; 18: 3656
  • 57 Leibeling M, Koester DC, Pawliczek M, Schild DC, Werz DB. Nat. Chem. Biol. 2010; 6: 199
  • 58 Michigami K, Hayashi M. Tetrahedron 2012; 68: 1092
  • 59 Chen P, Lin L. Tetrahedron 2013; 69: 10045
  • 60 Chen H, Luo X, Qiu S, Sun G, Zhang J. Glycoconj. J. 2017; 34: 13
  • 61 Benzyl 4,6-Di-O-acetyl-2,3-dideoxy-α-d-erythro-hex-2-enopyranoside (3a); Typical Procedure Fe3O4@C@Fe(Ш) catalyst (8 mg, 0.01 mmol) was added to a mixture of 3,4,6-tri-O-acetyl-d-glucal (1a, 0.1 mmol, 27.2 mg) and BnOH (2a; 1.2 mmol, 12.5 ul) in CH2Cl2 (1.0 mL) and the mixture was stirred at rt (25 °C) under N2. On consumption of the glucal (TLC), the mixture and catalyst were separated magnetically. The solution was then evaporated to give a crude product that was purified by column chromatography [silica gel, PE–EtOAc (6:1)] to give a colorless oil; yield 29.8 mg. (93%). Benzyl 4,6-Di-O-diacetyl-2,3-dideoxyalpha-d-erythro-2-hexenopyranoside (3a) 1H NMR (500 MHz, CDCl3): δ = 7.36 (d, J = 4.9 Hz, 5 H), 5.90 (d, J = 10.4 Hz, 1 H), 5.87–5.83 (m, 1 H), 5.33 (dd, J = 9.4, 1.3 Hz, 1 H), 5.14 (s, 1 H), 4.81 (d, J = 11.7 Hz, 1 H), 4.60 (d, J = 11.7 Hz, 1 H), 4.25 (dd, J = 11.6, 5.0 Hz, 1 H), 4.18–4.14 (m, 1 H), 4.14–4.11 (m, 1 H), 2.10 (s, 3 H), 2.08 (s, 3 H). LRMS (ESI+): m/z [M + Na]+ calcd for C17H20NaO6: 343.12; found: 343.15 (5-Formyl-2-furyl)methyl 4,6-Di-O-acetyl-2,3-dideoxy-2-iodo-α-d-erythro-hex-2-enopyranoside (7h) Yellow oil; yield: 39.4 mg (85%). 1H NMR (500 MHz, CDCl3): δ = 9.63 (s, 1 H), 7.23 (d, J = 3.1 Hz, 1 H), 6.63 (d, J = 2.9 Hz, 1 H), 6.50 (s, 1 H), 5.31 (d, J = 8.6 Hz, 1 H), 5.10 (s, 1 H), 4.75 (ddd, J = 19.2, 13.5, 7.4 Hz, 2 H), 4.20 (ddd, J = 30.1, 16.3, 5.3 Hz, 3 H), 2.09 (d, J = 6.9 Hz, 6 H). 13C NMR (125 MHz, CDCl3): δ = 177.85, 170.79, 170.11, 157.15, 152.98, 138.61, 121.97, 112.01, 99.17, 73.08, 67.21, 66.84, 62.93, 62.55, 20.99, 20.92. HRMS (ESI+): m/z [M + Na]+ calcd for C16H17INaO6: 486.9866; found: 486.9860. Methyl 2,3,4-Tri-O-benzyl-6-O-(4,6-di-O-acetyl-2-bromo-2,3-dideoxy-α-d-erythro-hex-2-enopyranosyl)-α-d-glucopyranoside (9b) Yellow oil; yield: 65.6 mg (87%). 1H NMR (500 MHz, CDCl3): δ = 7.36–7.28 (m, 15 H), 6.19 (s, 1 H), 5.32 (d, J = 8.7 Hz, 1 H), 5.15 (s, 1 H), 4.97 (d, J = 10.8 Hz, 1 H), 4.92 (d, J = 11.1 Hz, 1 H), 4.84–4.77 (m, 2 H), 4.66 (dd, J = 11.2, 8.5 Hz, 2 H), 4.59 (d, J = 3.0 Hz, 1 H), 4.19 (dd, J = 12.3, 5.1 Hz, 1 H), 4.13 (d, J = 10.9 Hz, 2 H), 4.01 (t, J = 9.2 Hz, 1 H), 3.89–3.81 (m, 2 H), 3.76 (d, J = 10.6 Hz, 1 H), 3.66 (t, J = 9.4 Hz, 1 H), 3.53 (dd, J = 9.7, 2.9 Hz, 1 H), 3.37 (s, 3 H), 2.08 (s, 3 H), 2.04 (s, 3 H). 13C NMR (125 MHz, CDCl3): δ = 170.81, 170.17, 138.87, 138.47, 138.24, 129.74, 128.60, 128.57, 128.54, 128.30, 128.19, 128.08, 127.88, 127.77, 122.54, 98.17, 97.80, 82.06, 80.01, 77.75, 75.93, 75.17, 73.54, 70.92, 66.93, 66.85, 66.57, 62.53, 55.37, 53.57, 21.00, 20.87. HRMS (ESI+): m/z [M + Na]+ calcd for C38H43BrNaO11: 777.1887; found: 777.1881. Ethyl 4,6-Di-O-acetyl-2-chloro-2,3-dideoxy-α-d-erythro-hex-2-enopyranoside (11a) Yellow oil; yield: 26.0 mg (89%). 1H NMR (500 MHz, CDCl3): δ = 5.98 (s, 1 H), 5.35 (d, J = 9.3 Hz, 1 H), 4.91 (s, 1 H), 4.25–4.14 (m, 3 H), 3.84 (dq, J = 14.3, 7.1 Hz, 1 H), 3.70–3.61 (m, 1 H), 2.09 (s, 3 H), 2.07 (s, 3 H), 1.28 (t, J = 7.1 Hz, 3 H). 13C NMR (125 MHz, CDCl3): δ = 170.80, 170.22, 132.85, 125.48, 96.65, 66.82, 66.25, 65.25, 62.62, 20.99, 20.86, 15.26. HRMS (ESI+): m/z [M + Na]+ calcd for C12H17ClNaO6: 315.0612; found: 315.0606.