Synlett 2019; 30(13): 1508-1524
DOI: 10.1055/s-0037-1611853
account
© Georg Thieme Verlag Stuttgart · New York

An Old Dog with New Tricks: Enjoin Wolff–Kishner Reduction for Alcohol Deoxygenation and C–C Bond Formations

Chao-Jun Li*
Department of Chemistry and FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada   Email: cj.li@McGill.ca
,
Jianlin Huang ◊
,
Xi-Jie Dai  ◊
,
Haining Wang ◊
,
,
Wei Wei ◊
,
Huiying Zeng ◊
,
Jianting Tang ◊
,
Chenchen Li ◊
,
Dianhu Zhu ◊
,
Leiyang Lv ◊
› Author Affiliations
We thank the Canada Research Chair (Tier I) foundation, the Canada Foundation for Innovation, Natural Sciences and Engineering Research Council of Canada, Fonds Québécois de la Recherche sur la Nature et les Technologies, McGill University and the Canadian Council of Arts (Killam Research Fellow Program) for support of our research We also thank the China Scholarship Council, China Postdoctoral Foundation, Shanghai Institute of Organic chemistry (CAS), and the Quebec Merit Fellowships for Foreign Postdoc (PBEEE) for supporting the co-authors.
Further Information

Publication History

Received: 23 March 2019

Accepted after revision: 14 May 2019

Publication Date:
13 June 2019 (eFirst)

The co-authors are based on the chronical order worked on this project

Abstract

The Wolff–Kishner reduction, discovered in the early 1910s, is a fundamental and effective tool to convert carbonyls into methylenes via deoxygenation under strongly basic conditions. For over a century, numerous valuable chemical products have been synthesized by this classical method. The reaction proceeds via the reversible formation of hydrazone followed by deprotonation with the strong base to give an N-anionic intermediate, which affords the deoxygenation product upon denitrogenation and protonation. By examining the mechanistic pathway of this century old classical carbonyl deoxygenation, we envisioned and subsequently developed two unprecedented new types of chemical transformations: a) alcohol deoxygenation and b) C–C bond formations with various electrophiles including Grignard-type reaction, conjugate addition, olefination, and diverse cross-coupling reactions.

1 Introduction

2 Background

3 Alcohol Deoxygenation

3.1 Ir-Catalyzed Alcohol Deoxygenation

3.2 Ru-Catalyzed Alcohol Deoxygenation

3.3 Mn-Catalyzed Alcohol Deoxygenation

4 Grignard-Type Reactions

4.1 Ru-Catalyzed Addition of Hydrazones with Aldehydes and Ketones

4.2 Ru-Catalyzed Addition of Hydrazone with Imines

4.3 Ru-Catalyzed Addition of Hydrazone with CO2

4.4 Fe-Catalyzed Addition of Hydrazones

5 Conjugate Addition Reactions

5.1 Ru-Catalyzed Conjugate Addition Reactions

5.2 Fe-Catalyzed Conjugate Addition Reactions

6 Cross-Coupling Reactions

6.1 Ni-Catalyzed Negishi-type Coupling

6.2 Pd-Catalyzed Tsuji–Trost Alkylation Reaction

7 Other Reactions

7.1 Olefination

7.2 Heck-Type Reaction

7.3 Ullmann-Type Reaction

8 Conclusion and Outlook

 
  • References and Notes

  • 1 Kishner N. J. Russ. Phys. Chem. Soc. 1911; 43: 582
  • 2 Wolff L. Justus Liebigs Ann. Chem. 1912; 394: 86
  • 3 Li JJ. Name Reactions, 5th ed. Springer; Switzerland: 2014
  • 4 Kuethe JT, Childers KG, Peng Z, Journet M, Humphrey GR, Vickery T, Bachert D, Lam TT. Org. Process Res. Dev. 2009; 13: 576
  • 5 Huang-Minion J. Am. Chem. Soc.1946, 68, 2487
  • 6 Osdene TS, Timmis GM, Maguire MH, Shaw G, Goldwhite H, Saunders BC, Clark ER, Epstein PF, Lamchen M, Stephen AM, Tipper CF. H, Eaborn C, Mukerjee SK, Seshadri TR, Willenz J, Robinson R, Thomas AF, Hickman JR, Kenyon J, Crocker HP, Hall RH, Burnell RH, Taylor WI, Watkins WM, Barton DH. R, Ives DA. J, Thomas BR. J. Chem. Soc. 1955; 2038
  • 7 Grundon MF, Henbest HB, Scott MD. J. Chem. Soc. 1963; 1855
  • 8 Caglioti L, Magi M. Tetrahedron 1963; 19: 1127
  • 9 Cram DJ, Sahyun MR. V. J. Am. Chem. Soc. 1962; 84: 1734
  • 10 Furrow ME, Myers AG. J. Am. Chem. Soc. 2004; 126: 5436
  • 11 Corey EJ, Cheng X.-M. The Logic of Chemical Synthesis . John Wiley & Sons; New York: 1989
  • 12 Grignard V. Compt. Rend. 1890; 130: 1322
  • 13 Perlmutter P. Conjugate Addition Reactions in Organic Synthesis . Pergamon Press; New York: 1992
  • 14 Miyaura N, Yamada K, Suzuki A. Tetrahedron Lett. 1979; 20: 3437
    • 15a Corriu RJ. P, Masse JP. J. C. S. Chem. Commun. 1972; 144a
    • 15b Tamao K, Sumitani K, Kumada M. J. Am. Chem. Soc. 1972; 94: 4374
  • 16 Stille JK. Angew. Chem., Int. Ed. Engl. 1986; 25: 508
  • 17 Hatanaka Y, Hiyama T. J. Org. Chem. 1988; 53: 918
  • 18 Negishi E.-I. Organometallics in Organic Synthesis . John Wiley & Sons; New York: 1980
  • 19 Sonogashira K. J. Organomet. Chem. 2002; 653: 46
    • 20a Li C.-J. Acc. Chem. Res. 2002; 35: 533
    • 20b Li C.-J. Acc. Chem. Res. 2009; 42: 335
    • 20c Li C.-J. Acc. Chem. Res. 2010; 43: 581
  • 21 Barton DH. R, McCombie SW. J. Chem. Soc., Perkin Trans. 1 1975; 1574
  • 22 Hamid MH. S, Slatford P, Williams JM. Adv. Synth. Catal. 2007; 349: 1555
  • 23 Baldwin JE, Bottaro JC, Kolhe JN, Adlington RM. J. Chem. Soc., Chem. Commun. 1984; 22
  • 24 Kropf H, Angi F. J. Chem. Res., Synop. 1982; 136
  • 25 For a recent review, see: Xia Y, Qiu D, Wang J. Chem. Rev. 2017; 117: 13810
  • 26 Shiramizu M, Toste FD. Angew. Chem. Int. Ed. 2012; 51: 8082
  • 27 McCombie SW. In Comprehensive Organic Synthesis, Vol. 8. Trost BM, Fleming I. Pergamon Press; Oxford: 1991: 811-833
  • 28 Saito I, Ikehira H, Kasatani R, Watanabe M, Matsuura T. J. Am. Chem. Soc. 1986; 108: 3115
  • 29 Zhang L, Koreeda M. J. Am. Chem. Soc. 2004; 126: 13190
  • 30 Dieguez HR, Lopez A, Domingo V, Arteaga JF, Dobado JA, Herrador MM, Quilez de lMoral JF, Barrero AF. J. Am. Chem. Soc. 2010; 132: 254
  • 31 Nguyen JD, Reiss B, Dai C, Stephenson CR. Chem. Commun. 2013; 49: 4352
  • 32 Herrmann JM, König B. Eur. J. Org. Chem. 2013; 7017
  • 33 Huang J.-L, Dai X.-J, Li C.-J. Eur. J. Org. Chem. 2013; 6496
  • 34 Dai X.-J, Li C.-J. J. Am. Chem. Soc. 2016; 138: 5433
  • 35 Bauer JO, Chakraborty S, Milstein D. ACS Catal. 2017; 7: 4462
  • 36 Huang J.-L., Li C.-J.; unpublished results
  • 37 Wang H, Dai X.-J, Li C.-J. Nat. Chem. 2017; 9: 374
  • 38 Zimmerman HE, Traxler MD. J. Am. Chem. Soc. 1959; 79: 1920
  • 39 Chen N, Dai X.-J, Wang H, Li C.-J. Angew. Chem. Int. Ed. 2017; 56: 6260
  • 40 Sakakura T, Choi J.-C, Yasuda H. Chem. Rev. 2007; 107: 2365
  • 41 Li X, Yu J, Jaroniec M, Chen X. Chem. Rev. 2019; 119: 3962; DOI:10.1021/acs.chemrev.8b00400
  • 42 Volpin ME, Kolomnikov IS. Organomet. React. 1975; 5: 313
  • 43 Yan SS, Zhu L, Ye JH, Zhang Z, Huang H, Zeng H, Li CJ, Lan Y, Yu DG. Chem. Sci. 2018; 9: 4873
  • 44 Field LD, Guest RW, Vuong KQ, Dalgarno SJ, Jensen P. Inorg. Chem. 2009; 48: 2246
  • 45 Li C.-C, Dai X.-J, Wang H, Zhu D, Gao J, Li C.-J. Org. Lett. 2018; 20: 3801
  • 46 Chatt J, Hayter RG. J. Chem. Soc. 1961; 5507
  • 47 Dai X.-J, Wang H, Li C.-J. Angew. Chem. Int. Ed. 2017; 56: 6302
  • 48 Negishi E.-I. In Handbook of Organopalladium Chemistry for Organic Synthesis . Vol. 1 Negishi E.-I. John Wiley & Sons; New York: 2002: 229-247
  • 49 Tang J, Lv L, Dai X.-J, Li C.-C, Li L, Li C.-J. Chem. Commun. 2018; 54: 1750
  • 50 Zeng H, Qiu Z, DomÍnguez-Huerta A, Hearne Z, Chen Z, Li C.-J. ACS Catal. 2017; 7: 510
  • 51 Lv LY, Zhu DH, Tang JT, Qiu ZH, Li C.-C, Gao J, Li C.-J. ACS Catal. 2018; 8: 4622
  • 52 Cárdenas DJ. Angew. Chem. Int. Ed. 2003; 42: 384
  • 53 Zhu D, Lv L, Qiu Z, Li C.-J. J. Org. Chem. 2019; 84: 6312
  • 54 Zhu C, Zhang J. Chem. Commun. 2019; 55: 2793
  • 55 Trost BM. Chem. Rev. 1996; 96: 395
  • 56 Harutyunyan SR, Den Hartog T, Geurts K, Minnaard AJ, Feringa BL. Chem. Rev. 2008; 108: 2824
  • 57 Kacprzynski MA, Hoveyda AH. J. Am. Chem. Soc. 2004; 126: 10676
  • 58 Fañanás-Mastral M, Pérez M, Bos PH, Rudolph A, Harutyunyan SR, Feringa BL. Angew. Chem. Int. Ed. 2012; 51: 1922
  • 59 Millet R, Bernardez T, Palais L, Alexakis A. Tetrahedron Lett. 2009; 50: 3474
  • 60 You HZ, Rideau E, Sidera M, Fletcher SP. Nature 2015; 517: 351
  • 61 Zhang P, Brozek LA, Morken JP. Am. Chem. Soc. 2010; 132: 10686
  • 62 Zhu D, Lv L, Li C.-C, Ung S, Gao J, Li C.-J. Angew. Chem. Int. Ed. 2018; 57: 16520
  • 63 Kelly SE. Alkene Synthesis . In Comprehensive Organic Synthesis, Vol. 1. Trost BM, Fleming I. Pergamon Press; Oxford: 1991: 729-817
  • 64 McMurrv JE. Chem. Rev. 1989; 89: 1513
  • 65 Wei W, Dai X.-J, Wang H, Li C, Yang X, Li C.-J. Chem. Sci. 2017; 8: 8193
  • 66 Das UK, Chakraborty S, Diskin-Posner Y, Milstein D. Angew. Chem. Int. Ed. 2018; 57: 13444
  • 67 Beletskaya IP, Cheprakov AV. Chem. Rev. 2000; 100: 3009
  • 68 LeBras J, Muzart J. Chem. Rev. 2011; 111: 1170
  • 69 Lv L, Zhu D, Li C.-J. Nat. Commun. 2019; 10: 715
  • 70 Nelson TD, Crouch RD. Org. React. 2004; 63: 265
  • 71 Lv L, Qiu Z, Li J, Liu M, Li C.-J. Nat. Commun. 2018; 9: 4739
  • 72 Liu YH, Tang DL, Cao KH, Yu L, Han J, Xu Q. J. Catal. 2018; 360: 250