RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000084.xml
Synthesis 2019; 51(18): 3477-3484
DOI: 10.1055/s-0037-1611850
DOI: 10.1055/s-0037-1611850
paper
Preparation of 2-(3-Methyleneindolin-2-yl)phenols via Sodium Hydride Promoted C–C/C–O Bond Cleavage
Financial support from the National Natural Science Foundation of China (21562005, 51503037), the Natural Science Foundation of Guangxi Province (2016GXNSFFA380005), the Overseas 100 Talents Program of Guangxi Higher Education, and the One Thousand Young and Middle-Aged College and University Backbone Teachers Cultivation Program of Guangxi is greatly appreciated.Weitere Informationen
Publikationsverlauf
Received: 04. April 2019
Accepted after revision: 13. Mai 2019
Publikationsdatum:
12. Juni 2019 (online)
◊ F.-P. Liu and H.-P. Zhao contributed equally to this work.
Abstract
A variety of 2-(3-methyleneindolin-2-yl)phenols were prepared in good to excellent yields through a NaH-promoted C–C/C–O bond cleavage of fused indolines under mild and simple conditions. Mechanistic studies showed that NaH serves as a nucleophile, attacking the aldehyde group of indoline, which is followed by tandem C–C/C–O bond cleavage to afford the desired products. A representative 2-(3-methyleneindolin-2-yl)phenol was easily prepared on a gram scale.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1611850.
- Supporting Information
-
References
- 1a Handbook of Reagents for Organic Synthesis, Acidic and Basic Reagents . Reich HJ, Rigby JH. John Wiley & Sons Inc; Hoboken: 1999: 340-343
- 1b Verma A. Synlett 2010; 2361
- 2 Dunn JM. M, Duran-Capece A, Meehan B, Ulis J, Iwama T, Gloor G, Wong G, Bekos E. Org. Process Res. Dev. 2011; 15: 1442
- 3a Encyclopedia of Reagents for Organic Synthesis, Vol. 7. Paquette LA. John Wiley & Sons; New York: 1995: 4568-4571
- 3b Zhang Y, Yu A, Jia J, Ma S, Li K, Wei Y, Meng X. Chem. Commun. 2017; 53: 10672
- 3c Tang X, Studer A. Org. Lett. 2016; 18: 4448
- 3d Basceken S, Kaya S, Balci M. J. Org. Chem. 2015; 80: 12552
- 4a Nelson RB, Gribble GW. J. Org. Chem. 1974; 39: 1425
- 4b Krull LH, Friedman M. Biochem. Biophys. Res. Commun. 1967; 29: 373
- 4c Natsume M, Kumadaki S, Kanda Y, Kiuchi K. Tetrahedron Lett. 1973; 14: 2335
- 4d Hesek D, Lee M, Noll BC, Fisher JF, Mobashery S. J. Org. Chem. 2009; 74: 2567
- 4e Mao Y, Liu Y, Hu Y, Wang L, Zhang S, Wang W. ACS Catal. 2018; 8: 3016
- 4f Tejo C, Pang JH, Ong DY, Oi M, Uchiyama M, Takita R, Chiba S. Chem. Commun. 2018; 54: 1782
- 4g Hokamp T, Dewanji A, Lübbesmeyer M, Mück-Lichtenfeld C, Würthwein E, Studer A. Angew. Chem. Int. Ed. 2017; 56: 13275
- 5a Too PC, Chan GH, Tnay YL, Hirao H, Chiba S. Angew. Chem. Int. Ed. 2016; 55: 3719
- 5b Ong DY, Tejo C, Xu K, Hirao H, Chiba S. Angew. Chem. Int. Ed. 2017; 56: 1840
- 5c Huang Y, Chan GH, Chiba S. Angew. Chem. Int. Ed. 2017; 56: 6544
- 5d Kaga A, Hayashi H, Hakamata H, Oi M, Uchiyama M, Takita R, Chiba S. Angew. Chem. Int. Ed. 2017; 56: 11807
- 5e Hong Z, Ong DY, Muduli SK, Too PC, Chan GH, Tnay YL, Chiba S, Nishiyama Y, Hirao H, Soo HS. Chem. Eur. J. 2016; 22: 7108
- 6a Rosso VW, Lust DA, Bernot PJ, Grosso JA, Modi SP, Rusowicz A, Sedergran TC, Simpson JH, Srivastava SK, Humora MJ, Anderson NG. Org. Process Res. Dev. 1997; 1: 311
- 6b Garrett CE, Prasad K. Adv. Synth. Catal. 2004; 346: 889
- 7 Ma X.-P, Li K, Wu S.-Y, Liang C, Su G.-F, Mo D.-L. Green Chem. 2017; 19: 5761
- 8a Leng L, Zhou X, Liao Q, Wang F, Song H, Zhang D, Liu X.-Y, Qin Y. Angew. Chem. Int. Ed. 2017; 56: 3703
- 8b Smith MW, Snyder SA. J. Am. Chem. Soc. 2013; 135: 12964
- 8c Scott AI, Qureshi AA. J. Am. Chem. Soc. 1969; 91: 5874
- 8d Cockrum PA, Colegate SM, Edgar JA, Flower K, Gardner D, Willing RI. Phytochemistry 1999; 51: 153
- 9a James MJ, O’Brien P, Taylor RJ. K, Unsworth WP. Chem. Eur. J. 2016; 22: 2856
- 9b Liddon JT. R, Rossi-Ashton JA, Taylor RJ. K, Unsworth WP. Org. Lett. 2018; 20: 3349
- 9c Wang P.-F, Jiang C.-H, Wen X, Xu Q.-L, Sun H. J. Org. Chem. 2015; 80: 1155
- 9d Chandrashekhar R, Vemulapalli SP. B, Sridhar B, Reddy BV. S. Eur. J. Org. Chem. 2018; 1693
- 9e Gao R.-D, Ding L, Zheng C, Dai L.-X, You S.-L. Org. Lett. 2018; 20: 748
- 9f Gan P, Pitzen J, Qu P, Snyder SA. J. Am. Chem. Soc. 2018; 140: 919
- 9g Ren W, Wang Q, Zhu J. Angew. Chem. Int. Ed. 2016; 55: 3500
- 9h Yu Y, Li G, Jiang L, Zu L. Angew. Chem. Int. Ed. 2015; 54: 12627
- 9i Lin A, Yang J, Hashim M. Org. Lett. 2013; 15: 1950
- 9j Wu S.-Y, Chen W.-L, Ma X.-P, Liang C, Su G.-F, Mo D.-L. Adv. Synth. Catal. 2019; 361: 965
- 9k Dong Z, Zhang X.-W, Li W, Li Z.-M, Wang W.-Y, Zhang Y, Liu W, Liu W.-B. Org. Lett. 2019; 21: 1082
- 9l Wang X, Zhu M.-H, Schuman DP, Zhong D.-Y, Wang W.-Y, Wu L.-Y, Liu W, Stoltz BM, Liu W.-B. J. Am. Chem. Soc. 2018; 140: 10970
- 10 CCDC 1855985 (2a) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
For selected examples of NaH used as a base, see:
For selected examples of the preparation of indoline scaffolds, see: