Synlett 2019; 30(12): 1427-1430
DOI: 10.1055/s-0037-1611846
letter
© Georg Thieme Verlag Stuttgart · New York

Tricyanomethane and its Salts with Nitrogen Bases: A Correction of Sixteen Reports

Klaus Banert*
Chemnitz University of Technology, Organic Chemistry, Strasse der Nationen 62, 09111 Chemnitz, Germany   Email: klaus.banert@chemie.tu-chemnitz.de
,
Manfred Hagedorn
› Author Affiliations
Further Information

Publication History

Received: 29 March 2019

Accepted after revision: 10 May 2019

Publication Date:
05 June 2019 (eFirst)

Abstract

A series of 16 articles, dealing with formation of tricyanomethanide salts from nitrogen bases (amines) and tricyanomethane, turned out to be wrong because no tricyanomethane or similar compounds are used and no tricyanomethanide salts are prepared. This statement is based mainly on the recently published spectroscopic data and depicted spectra, which are completely incompatible with the claimed structures. Some of the tricyanomethanide salts are now synthesized from nitrogen heterocycles and tricyanomethane or other precursors. The corresponding products show plausible spectroscopic data and physical properties, which are entirely different to those previously reported.

Supporting Information

 
  • References and Notes

    • 1a Fairly T. Ann. Chem. Pharm. 1864; Supl. 3, 371
    • 1b Pfankuch F. J. Prakt. Chem. 1871; 4: 35
    • 1c Pfankuch F. J. Prakt. Chem. 1873; 6: 97
    • 2a Claus A. Ber. Dtsch. Chem. Ges. 1876; 9: 223
    • 2b Claus A. Justus Liebigs Ann. Chem. 1878; 191: 33
  • 3 Schmidtmann H. Ber. Dtsch. Chem. Ges. 1896; 29: 1168
  • 4 For a more detailed description of the cyanoform story, see Ref. 7 and 8.
  • 5 Trofimenko S. J. Org. Chem. 1963; 28: 217
  • 6 Trofimenko S, Little EL. Jr, Mower HF. J. Org. Chem. 1962; 27: 433
  • 7 Šišak D, McCusker LB, Buckl A, Wuitschik G, Wu Y.-L, Schweizer WB, Dunitz JD. Chem. Eur. J. 2010; 16: 7224
  • 8 Banert K, Chityala M, Hagedorn M, Beckers H, Stüker T, Riedel S, Rüffer T, Lang H. Angew. Chem. Int. Ed. 2017; 56: 9582
  • 9 The special conditions that are necessary to detect NMR signals of 4 and 5, the stability, and the decomposition of these compounds are explained in detail in Ref. 8.
  • 10 Bak B, Svanholt H. J. Mol. Struct. 1977; 37: 153
  • 11 Soltner T, Häusler J, Kornath AJ. Angew. Chem. Int. Ed. 2015; 54: 13775
  • 12 Bock H, Dammel R. Z. Naturforsch., B 1987; 42: 315
    • 13a Szczepaniak M, Moc J. J. Phys. Chem. A 2017; 121: 1319
    • 13b Brand H, Liebman JF, Schulz A. Eur. J. Org. Chem. 2008; 4665
    • 13c Bak B, Bjorkman C. J. Mol. Struct. 1975; 25: 131
    • 13d Stoyanov SS, Tsenov JA, Binev IG. Asian Chem. Lett. 2009; 13: 155
    • 13e Elroby SA. Chem. Cent. J. 2016; 10: 20
    • 14a Hantzsch A, Osswald G. Ber. Dtsch. Chem. Ges. 1899; 32: 641
    • 14b Boyd RH. J. Phys. Chem. 1963; 67: 737
    • 14c Raamat E, Kaupmees K, Ovsjannikov G, Trummal A, Kütt A, Saame J, Koppel I, Kaljurand I, Lipping L, Rodima T, Pihl V, Koppel IA, Leito I. J. Phys. Org. Chem. 2013; 26: 162
    • 14d Kütt A, Rodima T, Saame J, Raamat E, Mäemets V, Kaljurand I, Koppel IA, Garlyauskayte RY, Yagupolskii YL, Yagupolskii LM, Bernhardt E, Willner H, Leito I. J. Org. Chem. 2011; 76: 391
    • 15a Zolfigol MA, Baghery S, Moosavi-Zare AR, Vahdat SM, Alinezhad H, Norouzi M. RSC Adv. 2015; 5: 45027
    • 15b Zolfigol MA, Yarie M. RSC Adv. 2015; 5: 103617
    • 15c Zolfigol MA, Yarie M, Baghery S. Synlett 2016; 27: 1418
    • 15d Zolfigol MA, Mansouri N, Baghery S. Synlett 2016; 27: 1511
    • 15e Zolfigol MA, Kiafar M, Yarie M, Taherpour AA, Saeidi-Rad M. RSC Adv. 2016; 6: 50100
    • 15f Zolfigol MA, Bahrami-Nejad N, Baghery S. J. Mol. Liq. 2016; 218: 558
    • 15g Zolfigol MA, Bahrami-Nejad N, Afsharnadery F, Baghery S. J. Mol. Liq. 2016; 221: 851
    • 15h Zolfigol MA, Yarie M, Baghery S. J. Mol. Liq. 2016; 222: 923
    • 15i Zolfigol MA, Yarie M, Baghery S, Khoshnood A, Alonso DA. Res. Chem. Intermed. 2017; 43: 3291
    • 15j Baghery S, Zolfigol MA, Schirhagl R, Hasani M. Synlett 2017; 28: 1173
    • 15k Zolfigol MA, Khazaei A, Alaie S, Baghery S. Can. J. Chem. 2017; 95: 560
    • 15l Baghery S, Zolfigol MA, Safaiee M, Alonso DA, Khoshnood A. Appl. Organomet. Chem. 2017; 31: e3775
    • 15m Baghery S, Zolfigol MA, Schirhagl R, Hasani M. Catal. Lett. 2017; 147: 2083
    • 15n Baghery S, Zolfigol MA, Maleki F. New J. Chem. 2017; 41: 9276
    • 15o Yarie M, Zolfigol MA, Babaee S, Baghery S, Alonso DA, Khoshnood A. Res. Chem. Intermed. 2018; 44: 2839
    • 15p Mansouri N, Baghery S, Zolfigol MA. Nanochem. Res. 2018; 3: 170
  • 16 Kalinowski H.-O, Berger S, Braun S. 13C NMR Spektroskopie . Thieme; Stuttgart: 1984: 227
  • 17 The 13C NMR spectrum of 9j depicted in Ref. 15k and that shown in the corresponding supplementary data are quite different, but both spectra are clearly incompatible with the supposed structure of 9j.
  • 18 For some examples, see: Marszalek M, Fei Z, Zhu D.-R, Scopelliti R, Dyson PJ, Zakeeruddin SM, Grätzel M. Inorg. Chem. 2011; 50: 11561
  • 19 For details, see the Supporting Information.
  • 20 For an alternative synthesis of 9a, see: Kubo D, Ueda T, Tahara H, Mizuta K, Hashimoto H, Kasahara T. US 20080083626A1, 2008
  • 21 Hesse M, Meier H, Zeeh B, Bienz S, Bigler L, Fox T. Spektroskopische Methoden in der Organischen Chemie, 9th ed. Thieme; Stuttgart: 2016: 277
  • 22 Quite recently, another report on 9d, which was claimed to result from alleged 5, was published, see: Chehardoli G, Mansouri N. Iran. Chem. Commun. 2018; 6: 450