Synlett 2019; 30(12): 1484-1488
DOI: 10.1055/s-0037-1611840
letter
© Georg Thieme Verlag Stuttgart · New York

SO2F2-Promoted Dehydration of Aldoximes: A Rapid and Simple Access to Nitriles

Yiyong Zhao
a  College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   Email: gfzhang@zjut.edu.cn   Email: dingcr@zjut.edu.cn
,
Guangyao Mei
b  Zhejiang Hongyuan Pharmaceutical Co., Ltd., Linhai 317016, P. R. of China
,
Haibo Wang
b  Zhejiang Hongyuan Pharmaceutical Co., Ltd., Linhai 317016, P. R. of China
,
Guofu Zhang
a  College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   Email: gfzhang@zjut.edu.cn   Email: dingcr@zjut.edu.cn
,
Chengrong Ding
a  College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   Email: gfzhang@zjut.edu.cn   Email: dingcr@zjut.edu.cn
› Author Affiliations
We acknowledge financial support from the National Natural Science Foundation of China (no. 20702051), the Natural Science Foundation of Zhejiang Province (LY13B020017).
Further Information

Publication History

Received: 20 March 2019

Accepted after revision: 04 May 2019

Publication Date:
25 June 2019 (eFirst)

Abstract

A rapid, simple and mild process for the dehydration of aldoximes to give the corresponding nitriles, which utilizes SO2F2 as an efficient reagent, has been developed. A variety of (hetero)arene, alkene, alkyne and aliphatic aldoximes proceeded with high efficiency to afford nitriles in excellent to quantitative yields with great functional group compatibilities in acetonitrile under ambient conditions. Furthermore, an eco-friendly synthetic protocol to access nitriles from aldehydes with ortho-, meta- and para-nitrile groups was also described in aqueous methanol by using inorganic base Na2CO3, and a one-pot synthetic strategy to generate nitriles from aldehydes was proved to be feasible.

Supporting Information

 
  • References and Notes

    • 3a Sandmeyer T. Ber. Dtsch. Chem. Ges. 1884; 17: 1633
    • 3b Rosenmund KW, Struck E. Ber. Dtsch. Chem. Ges. B. 1919; 52: 1749
    • 3c Nielsen MA, Nielsen MK, Pittelkow A. Org. Process Res. Dev. 2004; 8: 1059
    • 3d Pradal A, Evano G. Chem. Commun. 2014; 50: 11907
    • 3e Cristau HJ, Ouali A, Spindler JF, Taillefer M. Chem. Eur. J. 2005; 11: 2483
    • 3f Zhang X, Xia A, Chen H, Liu Y. Org. Lett. 2017; 19: 2118
    • 3g Ushkov AV, Grushin VV. J. Am. Chem. Soc. 2011; 133: 10999
    • 4a Campbell JA, McDougald G, McNab H, Rees LV. C, Tyas RG. Synthesis 2007; 3179
    • 4b Hendrickson JB, Hussoin MS. J. Org. Chem. 1987; 52: 4137
    • 5a Luca LD, Giacomelli G, Porcheddu A. J. Org. Chem. 2002; 67: 6272
    • 5b Yadav LD. S, Srivastava VP, Patel R. Tetrahedron Lett. 2009; 50: 5532
    • 5c Singh MK, Lakshman MK. J. Org. Chem. 2009; 74: 3079
    • 5d Deton RM, An J, Lindovska P, Lewis W. Tetrahedron 2012; 68: 2899
    • 5e An XD, Yu SY. Org. Lett. 2015; 17: 5064
    • 6a Loupy A, Régnier S. Tetrahedron Lett. 1999; 40: 6221
    • 6b Boruah M, Knowar D. J. Org. Chem. 2002; 67: 7138
    • 6c Gucma M, Gołębiewski WM. Synthesis 2008; 1997
    • 6d Rai A, Yadav LD. S. Eur. J. Org. Chem. 2013; 1889
    • 6e Song YP, Shen DG, Zhang QH, Chen B, Xu GY. Tetrahedron Lett. 2014; 55: 639
    • 6f Ryohei O, Kazutoshi S, Hiromi H, Akira N, Tomohiro M, Yasuyoshi M. Synlett 2018; 1465
    • 7a Yang SH, Chang S. Org. Lett. 2001; 3: 4209
    • 7b Choi E, Lee C, Na Y, Chang S. Org. Lett. 2002; 4: 2369
    • 7c Yamaguchi K, Fujiwara H, Ogasawara Y, Kotani M, Mizuno N. Angew. Chem. Int. Ed. 2007; 46: 3922
    • 7d Tambara K, Pantoş GD. Org. Biomol. Chem. 2013; 11: 2466
    • 7e Hyodo K, Kitagawa S, Yamazaki M, Uchida K. Chem. Asian J. 2016; 11: 1348
    • 7f Rapeyko A, Climent MJ, Corma A, Concepcion P, Iborra S. ACS Catal. 2016; 6: 4564
  • 8 Holleman-Wiberg’s Inorganic Chemistry . Wiberg N, Holleman AF, Wiberg E. Academic Press; New York: 2001: 550

    • For the selected SuFEx chemistry, see:
    • 9a Dong JJ, Krasnova L, Finn MG, Sharpless KB. Angew. Chem. Int. Ed. 2014; 53: 9430
    • 9b Chen W, Dong JJ, Plate L, Mortenson DE, Brighty GJ, Li S, Liu Y, Galmozzi A, Lee PS, Hulce JJ, Cravatt BF, Saez E, Powers ET, Wilson IA, Sharpless KB, Kelly JW. J. Am. Chem. Soc. 2016; 138: 7353
    • 9c Gao B, Zhang L, Zheng Q, Zhou F, Klivansky LM, Lu J, Liu Y, Dong JJ, Wu P, Sharpless KB. Nat. Chem. 2017; 9: 1083
    • 9d Liu Z, Li J, Li SH, Li G, Sharpless KB, Wu P. J. Am. Chem. Soc. 2018; 140: 2919
    • 9e Wang H, Zhou F, Ren G, Zheng Q, Chen H, Gao B, Klivansky L, Liu Y, Wu B, Xu Q, Lu J, Sharpless KB, Wu P. Angew. Chem. Int. Ed. 2017; 56: 11203
    • 9f Marra A, Dong JJ, Ma TC, Giuntini S, Crescenzo E, Cerofolini L, Martinucci M, Luchinat C, Fragai M, Nativi C, Dondoni A. Chem. Eur. J. 2018; 24: 18981
    • 9g Guo TJ, Meng GY, Zhan XJ, Yang Q, Ma TC, Xu L, Sharpless KB, Dong JJ. Angew. Chem. Int. Ed. 2018; 57: 2605
    • 9h Smedley CJ, Zheng QH, Gao B, Li SH, Molino A, Duivenvoorden HM, Parker BS, Wilson DJ. D, Sharpless KB, Moses JE. Angew. Chem. Int. Ed. 2019; 58: 4552
    • 10a Revathi L, Ravindar L, Leng J, Rakesh KP, Qin HL. Asian J. Org. Chem. 2018; 7: 662
    • 10b Epifanov M, Foth PJ, Gu F, Barrillon C, Kanani SS, Higman CS, Hein JE, Sammis GM. J. Am. Chem. Soc. 2018; 140: 16464
    • 10c Schimler SD, Cismesia MA, Hanley PS, Froese RD. J, Jansma MJ, Bland DC, Sanford MS. J. Am. Chem. Soc. 2017; 139: 1452
    • 10d Hanley PS, Clark TP, Krasovskiy AL, Ober MS, O’Brien JP, Staton TS. ACS Catal. 2016; 6: 3515
    • 10e Zha GF, Fang WY, Li YG, Leng J, Chen X, Qin HL. J. Am. Chem. Soc. 2018; 140: 17666
    • 10f Zhao C, Fang WY, Rakesh KP, Qin HL. Org. Chem. Front. 2018; 5: 1835
    • 10g Fang WY, Huang YM, Leng J, Qin HL. Asian J. Org. Chem. 2018; 7: 751
    • 10h Fang WY, Leng J, Qin HL. Chem. Asian J. 2017; 12: 2323
    • 10i Zhao C, Zha GF, Fang WY, Rakesh KP, Qin HL. Eur. J. Org. Chem. 2019; 1801
    • 10j Revathi L, Ravindar L, Moku B, Qin HL. Org. Chem. Front. 2019; 6: 796
    • 10k Zhang X, Rakesh KP, Qin HL. Chem. Commun. 2019; 55: 2845
    • 10l Zha G. F., Fang W. Y., Leng J., Qin H. L.; Adv. Synth. Catal.; 2019, preprint; DOI: 10.1002/adsc.201900104
  • 11 Almost simultaneously Qin’s team published the results of a study that demonstrated a one-pot method for converting aldehydes into nitriles using 0.55 equiv of NH2OH and 5.0 equiv of Na2CO3, under SO2F2 atmosphere in DMSO for 12 h, which exhibits differences from our dehydration conditions, see: Fang, W.-Y.; Qin, H.-L. J. Org. Chem. 2019, 84, 5803.
    • 12a Li YS, Xu NZ, Mei GY, Zhao Y, Zhao YY, Lyu JH, Zhang GF, Ding CR. Can. J. Chem. 2018; 96: 810
    • 12b Zhang GF, Ma DT, Zhao YY, Zhang GH, Mei GY, Lyu JH, Ding CR, Shan S. ChemistryOpen 2018; 7: 885
    • 13a Nicolaou KC, Vourloumis D, Winssinger N, Baran PS. Angew. Chem. Int. Ed. 2000; 39: 44
    • 13b Newhouse T, Baran PS, Hoffmann RW. Chem. Soc. Rev. 2009; 38: 3010
  • 14 Li SS, Wu L, Qin L, Zhu YQ, Su F, Xu YJ, Dong L. Org. Lett. 2016; 18: 4214
  • 15 Converting Aldoximes into the Corresponding Nitriles in Acetonitrile; Typical Procedure: 4-Chlorobenzaldoxime 2e (0.137 g, 1.0 mmol), CH3CN (2.0 mL) and Et3N (278 μL, 2.0 mmol) were added into a 25 mL Schlenk flask equipped with magnetic stirrer and rubber stopper. Then the SO2F2 gas was introduced into the stirring reaction mixture by slow bubbling from a SO2F2 balloon, and the reaction mixture was stirred at room temperature for 15 min. After the reaction, the mixture was diluted with water and extracted with ethyl acetate (3 × 10 mL). The combined organic layers were then washed with brine, dried over anhydrous Na2SO4 and concentrated to dryness. The residue was purified by column chromatography on silica gel (300–400 mesh) with hexane and ethyl acetate to give 4-chlorobenzonitrile 3e. 1H NMR (500 MHz, CDCl3): δ = 7.62 (d, J = 8.7 Hz, 2 H), 7.49 (d, J = 8.7 Hz, 2 H). 13C NMR (125 MHz, CDCl3): δ = 139.6, 133.4, 129.7, 117.9, 110.9.
  • 16 Converting Nitrobenzaldoximes into Nitrobenzonitriles in Aqueous Methanol; Method a: 4-Nitrobenzaldoxime 2g (166 mg, 1.0 mmol), CH3OH (2.0 mL), H2O (0.5 mL) and Na2CO3 (159 mg, 1.5 mmol) were added into a 25 mL Schlenk flask equipped with magnetic stirrer and rubber stopper. The SO2F2 gas was introduced into the stirring reaction mixture by slow bubbling from a SO2F2 balloon, and the reaction mixture was stirred at room temperature for 30 min. After the reaction, the mixture was diluted with water and extracted with ethyl acetate (3 × 10 mL). The combined organic layers were then washed with brine, dried over anhydrous Na2SO4 and concentrated to dryness. The residue was purified by column chromatography on silica gel (300–400 mesh) with hexane and ethyl acetate to give the 4-nitrobenzonitriles 3g. 1H NMR (500 MHz, CDCl3): δ = 8.38 (d, J = 8.9 Hz, 2 H), 7.90 (d, J = 8.9 Hz, 2 H). 13C NMR (125 MHz, CDCl3): δ = 150.1, 133.5, 124.3, 118.4, 116.7.