Synthesis 2019; 51(16): 3151-3159
DOI: 10.1055/s-0037-1611820
paper
© Georg Thieme Verlag Stuttgart · New York

Organocatalytic Gram-Scale Synthesis and Alkylation of Heteroaryl and Electron-Rich Aryl α-Substituted γ-Lactones

Maxence Bos
,
Floris Buttard
,
Alexis Vallée
,
Université de Reims Champagne-Ardenne, Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, UFR des Sciences Exactes et Naturelles, BP 1039, 51687 Reims Cedex 2, France   Email: Emmanuel.riguet@univ-reims.fr
› Author Affiliations
We gratefully thank the Agence Nationale de la Recherche for financial support (HFOrgCat project ANR JCJC: ANR-12-JS07-0009).
Further Information

Publication History

Received: 28 February 2019

Accepted after revision: 09 April 2019

Publication Date:
30 April 2019 (online)


Abstract

The synthesis of γ-lactones α-substituted with heterocycles and electron-rich aromatic rings is described. The method, based on a sequence involving an organocatalytic addition of boronic acid to the 5-hydroxyfuran-2(5H)-one, followed by reduction and lactonization, gives access to broad range of γ-lactones on a gram scale. Among these, γ-lactones bearing a benzofuran, a benzothiophene, and an indole ring were alkylated in mild catalytic conditions to construct α-quaternary stereocenters. Interesting mild oxidation reaction, using molecular oxygen, was also highlighted during this study.

Supporting Information

 
  • References

    • 1a Carolina DD, Eliezer JB, Carlos AM. F. Mini-Rev. Med. Chem. 2007; 7: 1108
    • 1b Welsch ME, Snyder SA, Stockwell BR. Curr. Opin. Chem. Biol. 2010; 14: 347
  • 2 Lovering F, Bikker J, Humblet C. J. Med. Chem. 2009; 52: 6752
    • 3a Petasis NA, Akritopoulou I. Tetrahedron Lett. 1993; 34: 583
    • 3b Candeias NR, Montalbano F, Cal PM. S. D, Gois PM. P. Chem. Rev. 2010; 110: 6169
  • 4 Roscales S, Csaky AG. Chem. Soc. Rev. 2014; 43: 8215
  • 5 Sanchez-Sancho F, Csaky AG. Synthesis 2016; 48: 2165
  • 8 Bos M, Riguet E. Chem. Commun. 2017; 53: 4997
    • 9a Liu RY, Wasa M, Jacobsen EN. Tetrahedron Lett. 2015; 56: 3428
    • 9b Birrell JA, Desrosiers J.-N, Jacobsen EN. J. Am. Chem. Soc. 2011; 133: 13872
    • 9c Lightburn TE, De Paolis OA, Cheng KH, Tan KL. Org. Lett. 2011; 13: 2686
    • 9d Reyes-Gutierrez PE, Torres-Ochoa RO, Martinez R, Miranda LD. Org. Biomol. Chem. 2009; 7: 1388
    • 10a Nascimento de Oliveira M, Fournier J, Arseniyadis S, Cossy J. Org. Lett. 2017; 19: 14
    • 10b James J, Guiry PJ. ACS Catal. 2017; 7: 1397
    • 11a Bennett NB, Duquette DC, Kim J, Liu W.-B, Marziale AN, Behenna DC, Virgil SC, Stoltz BM. Chem. Eur. J. 2013; 19: 4414
    • 11b Meletis P, Patil M, Thiel W, Frank W, Braun M. Chem. Eur. J. 2011; 17: 11243
    • 12a Bryliakov KP. Chem. Rev. 2017; 117: 11406
    • 12b Chaudhari MB, Sutar Y, Malpathak S, Hazra A, Gnanaprakasam B. Org. Lett. 2017; 19: 3628
    • 12c Wang Y, Xiong T, Meng Q. Tetrahedron 2015; 71: 85
    • 12d Sim S.-BD, Wang M, Zhao Y. ACS Catal. 2015; 5: 3609
    • 12e Liang Y.-F, Jiao N. Angew. Chem. Int. Ed. 2014; 53: 548
    • 12f Xiao Z.-K, Yin H.-Y, Shao L.-X. Org. Lett. 2013; 15: 1254
    • 12g Buckley BR, Fernández D.-RB. Tetrahedron Lett. 2013; 54: 843
    • 12h Yang Y, Moinodeen F, Chin W, Ma T, Jiang Z, Tan C.-H. Org. Lett. 2012; 14: 4762
    • 12i Chuang GJ, Wang W, Lee E, Ritter T. J. Am. Chem. Soc. 2011; 133: 1760
    • 12j Masui M, Ando A, Shioiri T. Tetrahedron Lett. 1988; 29: 2835