Synlett 2019; 30(14): 1615-1620
DOI: 10.1055/s-0037-1611811
synpacts
© Georg Thieme Verlag Stuttgart · New York

Quick Access to Pyridines through 6π-3-Azatriene Electrocyclization: Concise Total Synthesis of Suaveoline Alkaloids

Hongbo Wei
a  Shaanxi Key Laboratory of Natural Products and Chemical Biology College of Chemistry and Pharmacy, Northwest A&F University 22 Xinong Road, Yangling 712100, P. R. of China
,
Yun Li  *
b  State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. of China   Email: liyun@lzu.edu.cn
› Author Affiliations
We gratefully acknowledge the financial support from the National Natural Science Foundation of China (21572089, 201702166), and the Program for Changjiang Scholars and the Innovative Research Team in Universities (PCSIRT: IRT_15R28), the FRFCU (lzujbky-2018-61), and the Gansu Provincial Sci. & Tech. Department (2016B01017).
Further Information

Publication History

Received: 18 March 2019

Accepted after revision: 03 April 2019

Publication Date:
15 April 2019 (eFirst)

This paper is dedicated to the Lanzhou University on the occasion of its 110th anniversary.

Abstract

Pyridine is a prevalent structural heterocyclic motifs in natural products, pharmaceuticals, and advanced materials. Several different methodologies have been developed for the synthesis of these kinds of molecules. However, a sustainable and efficient procedure for the synthesis of pyridines is still highly desirable. In this Synpacts article, we highlight our recent approach to the construction of highly substituted pyridines though a tandem condensation/alkyne isomerization/6π-3-azatriene electrocyclization sequence. The present protocol was used to synthesize a series of polysubstituted pyridines (30 examples) in moderate to good yields. The process also permitted the development of a concise strategy for collective total syntheses of suaveoline, norsuaveoline, and macrophylline.

 
  • References

  • 1 Allais C, Grassot J.-M, Rodriguez J, Constantieux T. Chem. Rev. 2014; 114: 10829
  • 2 Henry GD. Tetrahedron 2004; 60: 6043
  • 3 Binda C, Aldeco M, Geldenhuys WJ, Tortorici M, Mattevi A, Edmondson DE. ACS Med. Chem. Lett. 2012; 3: 39
  • 4 Hair PI, McCormack PL, Curran MP. Drugs 2008; 68: 1415
  • 5 Harrison C. Nat. Rev. Drug Discovery 2012; 12: 14
  • 6 Bora D, Deb B, Fuller AL, Slawin AM. Z, Woollins JD, Dutta DK. Inorg. Chim. Acta 2010; 363: 1539
  • 7 Desimoni G, Faita G, Quadrelli P. Chem. Rev. 2003; 103: 3119
    • 8a Chan Y.-T, Moorefield CN, Soler M, Newkome GR. Chem. Eur. J. 2010; 16: 1768
    • 8b Belhadj E, El-Ghayoury A, Mazari M, Sallé M. Tetrahedron Lett. 2013; 54: 3051
  • 9 Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 10a Hsieh T.-J, Chang F.-R, Chia Y.-C, Chen C.-Y, Chiu H.-F, Wu Y.-C. J. Nat. Prod. 2001; 64: 616
    • 10b Michael JP. Nat. Prod. Rep. 2005; 22: 627
    • 10c Santos VA. F. F. M, Regasini LO, Nogueira CR, Passerini GD, Martinez I, Bolzani VS, Graminha MA. S, Cicarelli RM. B, Furlan M. J. Nat. Prod. 2012; 75: 991
  • 11 Kelly TR, Echavarren A, Whiting A, Weibel FR, Miki Y. Tetrahedron Lett. 1986; 27: 6049
  • 12 Song L.-L, Mu Y.-L, Zhang H.-C, Wu G.-Y, Sun J.-Y. Nat. Prod. Res. DOI: 10.1080/14786419.2018.1536130.
    • 13a Gati W, Rammah MM, Rammah MB, Couty F, Evano G. J. Am. Chem. Soc. 2012; 134: 9078
    • 13b Wang D, Wang F, Song G, Li X. Angew. Chem. Int. Ed. 2012; 51: 12348
    • 13c Yamamoto S.-i, Okamoto K, Murakoso M, Kuninobu Y, Takai K. Org. Lett. 2012; 14: 3182
    • 13d Michlik S, Kempe R. Angew. Chem. Int. Ed. 2013; 52: 6326
    • 13e Shi Z, Loh T.-P. Angew. Chem. Int. Ed. 2013; 52: 8584
    • 13f Neely JM, Rovis T. J. Am. Chem. Soc. 2014; 136: 2735
    • 13g Prechter A, Henrion G, dit Bel P, Gagosz F. Angew. Chem. Int. Ed. 2014; 53: 4959
    • 13h Wu J, Xu W, Yu Z.-X, Wang J. J. Am. Chem. Soc. 2015; 137: 9489
    • 13i Vessally E, Hosseinian A, Edjlali L, Bekhradnia A, Esrafili MD. RSC Adv. 2016; 6: 71662
    • 13j Wang Y, Song L.-J, Zhang X, Sun J. Angew. Chem. Int. Ed. 2016; 55: 9704
    • 14a Stout DM. Meyers A. I. Chem. Rev. 1982; 82: 223
    • 14b Paolis OD, Baffoe J, Landge SM, Török B. Synthesis 2008; 3423
    • 14c Cottedll IC, Usyatinsky AY, Arnold JM, Clark DS, Dordick JS, Michels PC, Khmelnitsky YL. Tetrahedron Lett. 1998; 39: 1117
    • 15a Lewis DE. Angew. Chem. Int. Ed. 2017; 56: 9660
    • 15b Frank RL, Seven RP. J. Am. Chem. Soc. 1949; 71: 2629
    • 16a Jiang B, Hao W.-J, Wang X, Shi F, Tu S. J. Comb. Chem. 2009; 11: 846
    • 16b Mahernia S, Adib M, Mahdavi M, Nosrati M. Tetrahedron Lett. 2014; 55: 3844
  • 17 Bagley MC, Glover C, Merritt EA. Synlett 2007; 2459
  • 18 Piccialli V, D’Errico S, Borbone N, Oliviero G, Centore R, Zaccaria S. Eur. J. Org. Chem. 2013; 1781
    • 19a Stanforth SP, Tarbitb B, Watson MD. Tetrahedron Lett. 2002; 43: 6015
    • 19b Boger DL, Panek JS. J. Am. Chem. Soc. 2002; 107: 5745
    • 20a Heller B, Hapke M. Chem. Soc. Rev. 2007; 36: 1085
    • 20b Varela JA, Saá C. Chem. Rev. 2003; 103: 3787
    • 21a Sangu K, Fuchibe K, Akiyama T. Org. Lett. 2004; 6: 353
    • 21b Movassaghi M, Hill MD. J. Am. Chem. Soc. 2006; 128: 4592
    • 21c Liu S, Liebeskind LS. J. Am. Chem. Soc. 2008; 130: 6918
    • 21d Zhou H, Liu L, Xu S. J. Org. Chem. 2012; 77: 9418
    • 21e Mora-Radý H, Bialy L, Czechtizky W, Méndez M, Harrity JP. A. Angew. Chem. Int. Ed. 2016; 55: 5834
    • 21f Chen Z, Dai Z, Zhu Z, Yang X. Tetrahedron Lett. 2017; 58: 1258
    • 21g Giri SS, Liu R.-S. Chem. Sci. 2018; 9: 2991
  • 22 Nakamura I, Zhang D, Terada M. J. Am. Chem. Soc. 2010; 132: 7884
  • 23 Keskin S, Balci M. Org. Lett. 2015; 17: 964
  • 24 Zhao Z, Wei H, Xiao K, Cheng B, Zhai H, Li Y. Angew. Chem. Int. Ed. 2019; 58: 1148
  • 25 Wei H, Li Y, Xiao K, Cheng B, Wang H, Hu L, Zhai H. Org. Lett. 2015; 17: 5974
  • 26 Majumdar SP, Potier P, Poisson J. Tetrahedron Lett. 1972; 13: 1563
  • 27 Nasser AM. A. G, Court WE. J. Ethnopharmacol. 1984; 11: 99
  • 28 Batista Ferreira CV, Schripsema J, Verpoorte R, Beatriz Rech S, Henriques AT. Phytochemistry 1996; 41: 969
    • 29a Amer MM. A, Court WE. Planta Med. 1980; 8
    • 29b Nasser AM. A. G, Court WE. Phytochemistry 1983; 22: 2297
    • 30a Trudell ML, Cook JM. J. Am. Chem. Soc. 1989; 111: 7504
    • 30b Fu X, Cook JM. J. Am. Chem. Soc. 1992; 114: 6910
    • 30c Fu X, Cook JM. J. Org. Chem. 1993; 58: 661
    • 30d Wang T, Yu P, Li J, Cook JM. Tetrahedron Lett. 1998; 39: 8009
    • 30e Li J, Wang T, Yu P, Peterson A, Weber R, Soerens D, Grubisha D, Bennett D, Cook JM. J. Am. Chem. Soc. 1999; 121: 6998
    • 31a Bailey PD, Collier ID, Hollinshead SP, Moore MH, Morgan KM, Smith DI, Vernon JM. J. Chem. Soc., Chem. Commun. 1994; 1559
    • 31b Bailey PD, Morgan KM. Chem. Commun. 1996; 1479
    • 31c Bailey PD, Morgan KM. J. Chem. Soc., Perkin Trans. 1 2000; 3578
    • 32a Ohba M, Natsutani I, Sakuma T. Tetrahedron Lett. 2004; 45: 6471
    • 32b Ohba M, Natsutani I. Tetrahedron 2007; 63: 12689
    • 32c Ohba M, Natsutani I, Sakuma T. Tetrahedron 2007; 63: 10337