Synlett
DOI: 10.1055/s-0037-1611785
synpacts
© Georg Thieme Verlag Stuttgart · New York

Intermolecular Trapping of Alkoxyl Radicals with Alkenes: A New Route to Ether Synthesis

Anne-Laure Barthelemy
a  Institut Lavoisier de Versailles, UMR 8180, Université de Versailles Saint-Quentin, 78035 Versailles Cedex, France   Email: guillaume.dagousset@uvsq.fr
,
Béatrice Tuccio
b  Aix-Marseille Université - CNRS, Institut de Chimie Radicalaire UMR 7273, F-13397 Marseille Cedex 20, France
,
Emmanuel Magnier
a  Institut Lavoisier de Versailles, UMR 8180, Université de Versailles Saint-Quentin, 78035 Versailles Cedex, France   Email: guillaume.dagousset@uvsq.fr
,
a  Institut Lavoisier de Versailles, UMR 8180, Université de Versailles Saint-Quentin, 78035 Versailles Cedex, France   Email: guillaume.dagousset@uvsq.fr
› Author Affiliations
Further Information

Publication History

Received: 19 February 2019

Accepted after revision: 14 March 2019

Publication Date:
16 April 2019 (eFirst)

Abstract

Alkoxyl radicals are highly reactive species which rapidly react by hydrogen atom transfer (HAT) or β-fragmentation to afford a carbon-centered radical. We discuss herein how these RO· radicals can be efficiently trapped in an intermolecular manner by styrene derivatives when they are generated by photoredox catalysis from the corresponding N-alkoxypyridinium salts. This allows for the synthesis of valuable ethers with complete anti-Markovnikov regioselectivity.

1 Introduction

2 Anti-Markovnikov Alkoxylation of Alkenes: Background

3 Addition of Alkoxyl Radicals to Styrenes

4 Summary and Outlook

 
  • References

    • 2a Williamson AW. J. Chem. Soc. 1852; 4: 229
    • 2b Mitsunobu O. Synthesis 1981; 1
    • 3a Hartwig JF. Angew. Chem. Int. Ed. 1998; 37: 2046
    • 3b Muci AR, Buchwald SL. Top. Curr. Chem. 2002; 219: 131
    • 3c Kunz K, Scholz U, Ganzer D. Synlett 2003; 2428
    • 3d Ley SV, Thomas AW. Angew. Chem. Int. Ed. 2003; 42: 5400
  • 4 Neuteufel RA, Arnold DR. J. Am. Chem. Soc. 1973; 95: 4080
  • 5 Sutterer A, Moeller KD. J. Am. Chem. Soc. 2000; 122: 5636
  • 6 Hamilton DS, Nicewicz DA. J. Am. Chem. Soc. 2012; 134: 18577
  • 7 Weiser M, Hermann S, Penner A, Wagenknecht H.-A. Beilstein J. Org. Chem. 2015; 11: 568
    • 8a Luo C, Bandar JS. J. Am. Chem. Soc. 2018; 140: 3547
    • 8b Luo C, Bandar JS. Synlett 2018; 29: 2218

      Examples of intermolecular addition of alkoxyl radicals onto alkenes:
    • 9a Walling C, Thaler W. J. Am. Chem. Soc. 1961; 83: 3877
    • 9b Inoue T, Koyama K, Matsuoka T, Tsutsumi S. Bull. Chem. Soc. Jpn. 1967; 40: 162
    • 9c Elson IH, Mao SW, Kochi JK. J. Am. Chem. Soc. 1975; 97: 335
    • 9d Wong PC, Griller D, Scaiano JC. J. Am. Chem. Soc. 1982; 104: 5106
    • 9e Jones MJ, Moad G, Rizzardo E, Solomon DH. J. Org. Chem. 1989; 54: 1607

      Selected reviews on photoredox catalysis:
    • 10a Yoon TP, Ischay MA, Du J. Nat. Chem. 2010; 2: 527
    • 10b Narayanam JM. R, Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102
    • 10c Teplỳ F. Collect. Czech. Chem. Commun. 2011; 76: 859
    • 10d Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322

    • For reviews on photoredox-catalyzed generation of alkoxyl radicals, see:
    • 10e Zhang J, Chen YY. Acta Chim. Sin. 2017; 75: 41
    • 10f Guo J.-J, Hu A, Zuo Z. Tetrahedron Lett. 2018; 59: 2103
    • 10g Jia K, Chen YY. Chem. Commun. 2018; 54: 6105

      For the formation of alkoxyl radicals under photoredox catalysis, see:
    • 11a Zhang J, Li Y, Zhang FY, Hu CC, Chen YY. Angew. Chem. Int. Ed. 2016; 55: 1872
    • 11b Jia KF, Zhang FY, Huang HC, Chen YY. J. Am. Chem. Soc. 2016; 138: 1514
    • 11c Quint V, Morlet-Savary F, Lohier J.-F, Lalevée J, Gaumont A.-C, Lakhdar S. J. Am. Chem. Soc. 2016; 138: 7436
    • 11d Yayla HG, Wang H, Tarantino KT, Orbe HS, Knowles RR. J. Am. Chem. Soc. 2016; 138: 10794
    • 11e Wang C, Harms K, Meggers E. Angew. Chem. Int. Ed. 2016; 55: 13495
    • 11f Guo JJ, Hu AH, Chen YL, Sun JF, Tang HM, Zuo ZW. Angew. Chem. Int. Ed. 2016; 55: 15319
    • 11g Jia K, Pan Y, Chen YY. Angew. Chem. Int. Ed. 2017; 56: 2478
    • 11h Zhang J, Li Y, Xu R, Chen YY. Angew. Chem. Int. Ed. 2017; 56: 12619
    • 11i Kim I, Min M, Kang D, Kim K, Hong S. Org. Lett. 2017; 19: 1394
    • 11j Hu A, Guo J.-J, Pan H, Tang H, Gao Z, Zuo Z. J. Am. Chem. Soc. 2018; 140: 1612
    • 11k He Y.-T, Kang D, Kim I, Hong S. Green Chem. 2018; 20: 5209
    • 11l He Y.-T, Won J, Kim J, Park B, Kim T, Baik M.-H, Hong S. Org. Chem. Front. 2018; 5: 2595
    • 11m Wu X, Wang M, Huan L, Wang D, Wang J, Zhu C. Angew. Chem. Int. Ed. 2018; 57: 1640
    • 11n Wu X, Zhang H, Tang N, Wu Z, Wang D, Ji M, Xu Y, Wang M, Zhu C. Nat. Commun. 2018; 9: 3343
    • 11o Jelier B, Tripet PF, Pietrasiak E, Franzoni I, Jeschke G, Togni A. Angew. Chem. Int. Ed. 2018; 57: 13784
    • 11p Kim I, Park B, Kang G, Kim J, Jung H, Lee H, Baik M.-H, Hong S. Angew. Chem. Int. Ed. 2018; 57: 15517
    • 11q Li G.-X, Hu X, He G, Chen G. Chem. Sci. 2019; 10: 688
    • 11r Bao X, Wang Q, Zhu J. Angew. Chem. Int. Ed. 2019; 58: 2139

    • For a recent review, see:
    • 11s Capaldo L, Ravelli D. Chem. Commun. 2019; 55: 3029
    • 12a Carboni A, Dagousset G, Magnier E, Masson G. Org. Lett. 2014; 16: 1240
    • 12b Dagousset G, Carboni A, Magnier E, Masson G. Org. Lett. 2014; 16: 4340
    • 12c Carboni A, Dagousset G, Magnier E, Masson G. Chem. Commun. 2014; 50: 14197
    • 12d Carboni A, Dagousset G, Magnier E, Masson G. Synthesis 2015; 47: 2439
    • 12e Jarrige L, Carboni A, Dagousset G, Levitre G, Magnier E, Masson G. Org. Lett. 2016; 18: 2906
    • 12f Dagousset G, Simon C, Anselmi E, Tuccio B, Billard T, Magnier E. Chem. Eur. J. 2017; 23: 4282
    • 12g Daniel M, Dagousset G, Diter P, Klein P.-A, Tuccio B, Goncalves A.-M, Masson G, Magnier E. Angew. Chem. Int. Ed. 2017; 56: 3997
  • 13 Barthelemy A.-L, Tuccio B, Magnier E, Dagousset G. Angew. Chem. Int. Ed. 2018; 57: 13790
  • 14 Walton JC, Studer A. Acc. Chem. Res. 2005; 38: 794

    • Selected reviews:
    • 15a Knowles JP, Elliott LD, Booker-Milburn KI. Beilstein J. Org. Chem. 2012; 8: 2025
    • 15b Su Y, Straathof NJ. W, Hessel V, Noël T. Chem. Eur. J. 2014; 20: 10562
    • 15c Garlets ZJ, Nguyen JD, Stephenson CR. J. Isr. J. Chem. 2014; 54: 351
    • 15d Plutschack MB, Correia CA, Seeberger PH, Gilmore K. Top. Organomet. Chem. 2016; 57: 43
    • 15e Cambié D, Bottecchia C, Straathof NJ. W, Hessel V, Noël T. Chem. Rev. 2016; 116: 10276
  • 16 In the case of 4-cyano-N-phenethoxypyridinium salt β-fragmentation was mainly observed because it led to the formation of a benzylic radical, which is much stable than other primary C-centered radicals. For more details see ref.13
    • 17a Katriizky AR, Lunt E. Tetrahedron 1969; 25: 4291
    • 17b Sliwa H, Randria-Raharimanana C. Tetrahedron Lett. 1986; 27: 349
    • 17c Sliwa H, Ouattara L. J. Heterocycl. Chem. 1987; 24: 1617
    • 17d Sliwa H, Randria-Raharimanana C, Cordonnier G. J. Heterocycl. Chem. 1991; 28: 1127
    • 17e Karki SB, Dinnocenzo JP, Jones JP, Korzekwa KR. J. Am. Chem. Soc. 1995; 117: 3657

      Selected examples:
    • 18a Barba I, Chinchilla R, Gomez C. J. Org. Chem. 1990; 55: 3270
    • 18b Schultz MJ, Sigman MS. J. Am. Chem. Soc. 2006; 128: 1460
    • 18c Silva JrL. F, Craveiro MV, Gambardella MT. P. Synthesis 2007; 3851
    • 19a Buettner G. Free Radic. Biol. Med. 1987; 3: 259 and references therein
    • 19b Adam W, Hartung J, Okamoto H, Marquardt S, Nau WM, Pischel U, Saha-Moller CR, Spehar K. J. Org. Chem. 2002; 67: 6041
  • 20 Gould IR, Shukla D, Giesen D, Farid S. Helv. Chim. Acta 2001; 84: 2796