Synlett 2019; 30(07): 851-856
DOI: 10.1055/s-0037-1611754
letter
© Georg Thieme Verlag Stuttgart · New York

Direct N-sec-Alkylation of Amides by Reaction of α-Halohydroxamates and Sulfonylindoles: An Approach to 3-Indolyl Methanamines

Yuan Chen
a   College of Pharmacy and Biological Engineering, Chengdu University, Chengdu City 610106, P. R. of China
b   College of Chemistry and Chemical Engineering, China West Normal University, Nanchong City 637002, P. R. of China   Email: kangtairan@sina.com
,
Xiaoqiang Guo
a   College of Pharmacy and Biological Engineering, Chengdu University, Chengdu City 610106, P. R. of China
,
Chuang Zhou
a   College of Pharmacy and Biological Engineering, Chengdu University, Chengdu City 610106, P. R. of China
,
Lianmei Chen
a   College of Pharmacy and Biological Engineering, Chengdu University, Chengdu City 610106, P. R. of China
,
a   College of Pharmacy and Biological Engineering, Chengdu University, Chengdu City 610106, P. R. of China
b   College of Chemistry and Chemical Engineering, China West Normal University, Nanchong City 637002, P. R. of China   Email: kangtairan@sina.com
› Author Affiliations
We are grateful for financial support from the National Natural Science Foundation of China (NO. 21672172), the project of Youth Science and Technology Innovation Team of Sichuan Province, China (2017TD0008); the Education Department of Sichuan Province (NO. 15CZ0016).
Further Information

Publication History

Received: 29 November 2018

Accepted after revision: 20 February 2019

Publication Date:
28 March 2019 (online)


Abstract

A catalyst-free, base-mediated N-sec-alkylation of amides by reaction of sulfonylindoles and α-halohydroxamates has been developed. The N-sec-alkylation of amides reaction is based on an intermolecular nucleophilic addition of vinylogous imine with N-(benzyl­oxy)meth-acrylamide/azaoxyallyl cations formed in situ and represents a simple way to give polyfunctionalized 3-indolyl methanamines in good to excellent yields.

Supporting Information

 
  • References and Notes

    • 1a Somei M, Yamada F. Nat. Prod. Rep. 2004; 21: 278
    • 1b Faulkner DJ. Nat. Prod. Rep. 2002; 19: 1
    • 1c Shirakawa S, Kobayashi S. Org. Lett. 2006; 8: 4939
    • 1d Sidhu PS, Nassif N, McCallum MM, Teske K, Feleke B, Yuan NY, Nandhikonda P, Cook JM, Singh RK, Bikle DD, Arnold LA. ACS Med. Chem. Lett. 2014; 5: 199
    • 1e Sidhu PS, Teske K, Feleke B, Yuan NY, Guthrie ML, Fernstrum GB, Vyas ND, Han L, Preston J, Bogart JW, Silvaggi NR, Cook JM, Singh RK, Bikle DD, Arnold LA. Cancer Chemother. Pharm. 2014; 74: 787
    • 1f Bao B, Sun Q, Yao X, Hong J, Lee C.-O, Sim CJ, Im KS, Jung JH. J. Nat. Prod. 2005; 68: 711
    • 1g Bao B, Sun Q, Yao X, Hong J, Lee C.-O, Cho HY, Jung JH. J. Nat. Prod. 2007; 70: 2
    • 1h Feussner K.-D, Ragini K, Kumar R, Soapi KM, Aalbersberg WG, Harper MK, Carte B, Ireland CM. Nat. Prod. Rep. 2012; 29: 1424
    • 1i Molina P, Alcantara J, Lopez-Leonardo C. Tetrahedron 1996; 52: 5833
    • 1j Wynne JH, Stalick WM. J. Org. Chem. 2002; 67: 5850
  • 2 Wang X, Wang Z, Zhang G, Zhang W, Wu Y, Gao Z. Eur. J. Org. Chem. 2016; 502
    • 3a Jia Y.-X, Xie J.-H, Duan H.-F, Wang L.-X, Zhou Q.-L. Org. Lett. 2006; 8: 1621
    • 3b Esquivias J, Arrayas RM, Carretero JC. Angew. Chem. Int. Ed. 2006; 45: 629
    • 3c Mi X.-L, Luo S.-Z, He J.-Q, Cheng J.-P. Tetrahedron Lett. 2004; 45: 4567
    • 3d Hao J, Taktak S, Aikawa K, Yusa Y, Hatano M, Mikami K. Synlett 2001; 1443
    • 3e Wang Y.-Q, Song J, Hong R, Li H, Deng L. J. Am. Chem. Soc. 2006; 128: 8157
    • 3f Kang Q, Zhao Z.-A, You S.-L. J. Am. Chem. Soc. 2007; 129: 1484
    • 3g Xu F, Huang D, Han C, Shen W, Lin X, Wang Y. J. Org. Chem. 2010; 75: 8677
    • 3h Jia Y, Xie J, Duan H, Wang L, Zhou Q. Org. Lett. 2006; 8: 1621
    • 3i Mi XL, Luo SZ, He JQ, Cheng JP. Tetrahedron Lett. 2004; 45: 4567
    • 3j Xie W, Bloomfield KM, Jin Y, Dolney NY, Wang PG. Synlett 1999; 498
  • 4 Evano G, Blanchard N, Toumi M. Chem. Rev. 2008; 108: 3054

    • For reviews, see:
    • 5a Reznichenko AL, Hultzsch KC. Top. Organomet. Chem. 2013; 43: 51
    • 5b Nishina N, Yamamoto Y. Top. Organomet. Chem. 2013; 43: 115
    • 5c Hamid MH. S. A, Slatford PA, Williams JM. J. Adv. Synth. Catal. 2007; 349: 1555
  • 6 Li W.-R. Science of Synthesis, Vol. 21. Georg Thieme Verlag; New York: 2005: 179-257
  • 7 Do H.-Q, Bachman S, Bissember AC, Peters JC, Fu GC. J. Am. Chem. Soc. 2014; 136: 2162
    • 8a Acharya A, Anumandla D, Jeffrey CS. J. Am. Chem. Soc. 2015; 137: 14858
    • 8b DiPoto MC, Hughes RP, Wu J. J. Am. Chem. Soc. 2015; 137: 14861
    • 8c Ji W, Yao L, Liao X. Org. Lett. 2016; 18: 628
    • 9a Lengyel I, Sheehan JC. Angew. Chem. Int. Ed. Engl. 1968; 7: 25
    • 9b Kikugawa Y, Shimada M, Kato M, Sakamoto T. Chem. Pharm. Bull. 1993; 41: 2192
    • 9c Jeffrey CS, Barnes KL, Eickhoff JA, Carson CR. J. Am. Chem. Soc. 2011; 133: 7688
    • 9d Acharya A, Eickhoff JA, Jeffrey CS. Synthesis 2013; 45: 1825
    • 9e Barnes KL, Koster AK, Jeffrey CS. Tetrahedron Lett. 2014; 55: 4690
    • 9f Li C, Jiang K, Ouyang Q, Liu T.-Y, Chen Y.-C. Org. Lett. 2016; 18: 2738
    • 9g An Y, Xia H, Wu J. Chem. Commun. 2016; 10415
    • 9h Zhang K, Xu X, Zheng J, Yao H, Huang Y, Lin A. Org. Lett. 2017; 19: 2596
    • 9i Zhao H.-W, Zhao Y.-D, Liu Y.-Y, Zhao L.-J, Feng N.-N, Pang H.-L, Chen X.-Q, Song X.-Q, Du J. RSC Adv. 2017; 7: 12916
    • 10a Zhang K, Yang C, Yao H, Lin A. Org. Lett. 2016; 18: 4618
    • 10b Acharya A, Montes K, Jeffrey CS. Org. Lett. 2016; 18: 6082
    • 10c Jiang H, Chen F, Zhu C, Zhu R, Zeng H, Liu C, Wu W. Org. Lett. 2018; 20: 3166

      For selected examples, see:
    • 11a Shaikh RR, Mazzanti A, Petrini M, Bartoli G, Melchiorre P. Angew. Chem. Int. Ed. 2008; 47: 8707
    • 11b Dobish MC, Johnston JN. Org. Lett. 2010; 12: 5744
    • 11c Ballini R, Palmieri A, Petrini M, Shaikh RR. Adv. Synth. Catal. 2008; 350: 129
    • 11d Jing L, Wei J, Zhou L, Huang Z, Li Z, Wu D, Xiang H, Zhou X. Chem. Eur. J. 2010; 16: 10955
    • 11e Zhu X.-L, He W.-J, Yu L.-L, Cai C.-W, Zuo Z.-L, Qin D.-B, Liu Q.-Z, Jing L.-H. Adv. Synth. Catal. 2012; 354: 2965
    • 11f Li Y, Shi F.-Q, He Q.-L, You S.-L. Org. Lett. 2009; 11: 3182
    • 11g Zheng B.-H, Ding C.-H, Hou X.-L, Dai L.-X. Org. Lett. 2010; 12: 1688
    • 11h Cao L.-L, Ye Z.-S, Jiang G.-F, Zhou Y.-G. Adv. Synth. Catal. 2011; 353: 3352
    • 11i Wang J, Zhou S.-B, Lin D.-Z, Ding X, Jiang H.-L, Liu H. Chem. Commun. 2011; 8355
    • 11j Fochi M, Gramigna L, Mazzanti A, Duce S, Fantini S, Palmieri A, Petrini M, Bernardi L. Adv. Synth. Catal. 2012; 354: 1373
    • 11k Huang J.-Z, Wu X, Gong L.-Z. Adv. Synth. Catal. 2013; 355: 2531
    • 11l Protti S, Palmieri A, Petrini M, Fagnoni M, Ballini R, Albini A. Adv. Synth. Catal. 2013; 355: 643
    • 11m Luo J, Wu B, Chen M.-W, Jiang G.-F, Zhou Y.-G. Org. Lett. 2014; 16: 2578
    • 11n Kataja AO, Masson G. Tetrahedron 2014; 70: 8783
    • 11o Palmieri A, Petrini M, Shaikh RR. Org. Biomol. Chem. 2010; 8: 1259
    • 11p Luo J, Wu B, Chen M.-W, Jiang G.-F, Zhou Y.-G. Org. Lett. 2014; 16: 2578
    • 11q Chen P, Lu S, Guo W, Liu Y, Li C. Chem. Commun. 2016; 96
    • 11r Liu Z.-S, Li W.-K, Kang T.-R, He L, Liu Q.-Z. Org. Lett. 2015; 17: 150
    • 12a Kong W, Wang Q, Zhu J. J. Am. Chem. Soc. 2015; 137: 16028
    • 12b Wang M, Zhang X, Zhuang Y.-X, Xu Y.-H, Loh T.-P. J. Am. Chem. Soc. 2015; 137: 1341
  • 13 Föhlisch B, Gehrlach E, Herter R. Angew. Chem. Int. Ed. Engl. 1982; 21: 137
  • 14 Typical procedure and characterization data for 3a: To a solution of sulfonylindole 1a (0.1 mmol) in 1,4-dioxane (1.0 mL) was added α-halohydroxamates 2a (0.15 mmol) and Na2CO3 (0.3 mmol). The reaction mixture was stirred at 80 °C until the starting material sulfonylindole was consumed (monitored by TLC). After cooling to room temperature, the solvent was removed under reduced pressure. The crude product was purified by flash column chromatography on silica gel [flash column chromatography eluent, petroleum ether/ethyl acetate (6:1–4:1, v/v)] to give the pure product 3a (37 mg, 91% yield) as an oil. 1H NMR (400 MHz, CDCl3): δ = 7.37–7.34 (m, 3 H), 7.30–7.27 (m, 3 H), 7.23–7.21 (m, 1 H), 7.16–7.13 (m, 3 H), 7.11–7.08 (m, 1 H), 6.96–6.92 (m, 1 H), 6.77 (d, J = 6.94 Hz, 2 H), 5.48 (s, 1 H), 5.35 (s, 1 H), 4.95 (s, 1 H), 4.59 (d, J = 8.68 Hz, 1 H), 3.96 (d, J = 8.70 Hz, 1 H), 2.20 (s, 3 H), 2.06 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 171. 4, 141.1, 139.9, 135.1, 134.9, 134.4, 129.5, 129.3, 128.6, 128.5, 128.4, 128.3, 128.1, 127.0, 126.8, 121.3, 119.8, 119.7, 117.3, 110.3, 108.7, 78.6, 57.4, 20.4, 12.5. HRMS: m/z [M+H]+ calcd for C27H26N2O2: 410.2013; found: 410.2016.
  • 15 CCDC 1546337 (3g) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.