Synlett 2019; 30(10): 1125-1143
DOI: 10.1055/s-0037-1611735
account
© Georg Thieme Verlag Stuttgart · New York

Controlled-Coupling of Quinone Monoacetals by New Activation Methods: Regioselective Synthesis of Phenol-Derived Compounds

Tohru Kamitanaka
a   Research Organization of Science and Technology, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan   Email: kita@ph.ritsumei.ac.jp
,
Koji Morimoto
a   Research Organization of Science and Technology, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan   Email: kita@ph.ritsumei.ac.jp
b   College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
,
a   Research Organization of Science and Technology, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan   Email: kita@ph.ritsumei.ac.jp
b   College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
,
a   Research Organization of Science and Technology, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan   Email: kita@ph.ritsumei.ac.jp
› Author Affiliations
This work was partially supported by Grants-in-Aid for Scientific Research (A) (JSPS KAKENHI Grant Number 24249001) from the Japan Society for the Promotion of Science (JSPS), a Grant-in-Aid for Scientific Research on Innovative Areas ‘Advanced Molecular Transformation by Organocatalysts’ (MEXT Grant Number 23105006) from The Ministry of Education, Culture, Sports, Science and Technology (MEXT), and the Ritsumeikan Global Innovation Research Organization (R-GIRO) project.
T.K. acknowledges Grant-in-Aid for Research Activity Start-up (16H07340) from JSPS. T.D. acknowledges Grant-in-Aid for Young Scientist (A) (24689002), Grant-in-Aid for Scientific Research (C) (16K08186), and Grant-in-Aid for Challenging Exploratory Research (26620036) from JSPS. K.M. also acknowledges support from the Grant-in-Aid for Young Scientists (B) (23790030 and 25860017) and Grant-in-Aid for Research Activity Start-up (21890280) from JSPS.
Further Information

Publication History

Received: 26 December 2018

Accepted after revision: 23 January 2019

Publication Date:
25 March 2019 (online)


Abstract

We have studied for a long time the reaction of quinone acetal type compounds, such as quinone monoacetals, quinone O,S-acetals, and iminoquinone monoacetals, and have reported the regioselective introduction of various nucleophiles. Quinone monoacetals show various types of reactivities toward nucleophiles due to their unique structures. In this study, we found that aromatic and alkene nucleophiles can be regioselectively introduced into the α-position of the carbonyl group on quinone monoacetals by specific activation of the acetal moiety. These reactions enabled the metal-free synthesis of highly functionalized aromatic compounds by the regioselective introduction of nucleophiles. In this account, we describe our recent studies of the coupling of quinone monoacetals.

1 Introduction

2 Regioselective Introduction of Aromatic Nucleophiles into α-Position of Carbonyl

2.1 Biaryl Synthesis by Introduction of Aromatic Nucleophiles

2.2 Synthesis of Terphenyls and Oligoarenes by Iterative Coupling

2.3 Synthesis of Phenol Cross-Coupling Products

3 [3+2] Coupling with Alkene Nucleophiles

3.1 Development of Efficient [3+2] Coupling

3.2 Improvement of Brønsted Acid Promotor

4 Synthesis of α-Aryl Carbonyl Compounds Triggered by Silyl Transfer

5 Utilization of o-Quinone Monoacetals

6 Application to Iminoquinone Monoacetals

7 Conclusion

 
  • References

    • 1a Patai S. The Chemistry of Quinonoid Compounds, Part 2 . Wiley; New York: 1988
    • 1b Thomson RH. Naturally Occurring Quinones IV. Recent Advances . Blackie Academic & Professional; London: 1997
    • 1c Quideau S, Pouységu L. Org. Prep. Proced. Int. 1999; 31: 617
    • 1d Scott JD, Williams RM. Chem. Rev. 2002; 102: 1669
    • 1e Decker H, Schweikardt T, Tuczek F. Angew. Chem. Int. Ed. 2006; 45: 4546
    • 1f Nawrat CC, Moody CJ. Angew. Chem. Int. Ed. 2014; 53: 2056
    • 2a Dudfield PJ. In Comprehensive Organic Synthesis, Vol. 7. Trost BM, Fleming I. Pergamon Press; Oxford: 1991: 345
    • 2b Thomson RH. In The Total Synthesis of Natural Products, Vol. 7. ApSimon J. Wiley; New York: 1992: 311
    • 2c Gallagher PT. Contemp. Org. Synth. 1996; 3: 433
    • 2d Akai S, Kita Y. Org. Prep. Proced. Int. 1998; 30: 603
    • 2e Owton WM. J. Chem. Soc., Perkin Trans. 1 1999; 2409
    • 2f Batenko NG, Karlivans G, Valters R. Chem. Heterocycl. Compd. 2005; 41: 691
    • 2g Abraham I, Joshi R, Pardasani P, Pardasani RT. J. Braz. Chem. Soc. 2011; 22: 385

      Synthesis of QMA using lead(IV):
    • 3a Greenland H, Pinhey JT, Sternhell S. Aust. J. Chem. 1986; 39: 2067
    • 3b Quinkert G, Billhardt U.-M, Jakob H, Fischer G, Glenneberg J, Nagler P, Autze V, Heim N, Wacker M, Schwalbe T, Kurth Y, Bats JW, Dürner G, Zimmermann G, Kessler H. Helv. Chim. Acta 1987; 70: 771
    • 3c Omura K. Synth. Commun. 2000; 30: 877

      Synthesis of QMAs using thallium(III) nitrate – selected examples:
    • 4a McKillop A, Perry DH, Edwards M. J. Org. Chem. 1976; 41: 282
    • 4b Büchi G, Chu P.-S, Hoppmann A, Mak C.-P, Pearce A. J. Org. Chem. 1978; 43: 3983
    • 4c Parker KA, Kang S.-K. J. Org. Chem. 1980; 45: 1218
    • 4d Russell RA, Irvine RW, Warrener RN. J. Org. Chem. 1986; 51: 1595
    • 4e Horie T, Yamada T, Kawamura Y, Tsukayama M, Kuramoto M. J. Org. Chem. 1992; 57: 1038

      MnO2:
    • 5a Coutts IG. C, Humphreys DJ, Schofield K. J. Chem. Soc. C 1969; 1982
    • 5b Coutts IG. C, Hamblin MR, Welsby SE. J. Chem. Soc., Perkin Trans. 1 1981; 493

      DDQ:
    • 6a Danishefsky S, Berman EM, Ciufolini M, Etheredge SJ, Segmuller BE. J. Am. Chem. Soc. 1985; 107: 3891
    • 6b Semmelhack MF, Bozell JJ, Keller L, Sato T, Spiess EJ, Wulff W, Zask A. Tetrahedron 1985; 41: 5803
    • 6c Saito N, Ohira Y, Wada N, Kubo A. Tetrahedron 1990; 46: 7711
    • 6d Gladding JA, Bacci JP, Shaw SA, Smith AB. III. Tetrahedron 2011; 67: 6697 ; see also ref. 4b, 4d, 5a

      By anodic oxidation:
    • 7a Chen C.-P, Swenton JS. J. Chem. Soc., Chem. Commun. 1985; 1291
    • 7b Hart DJ, Merriman GH. Tetrahedron Lett. 1989; 30: 5093
    • 7c Tajima T, Fuchigami T. Chem. Eur. J. 2005; 11: 6129

      Other reports:
    • 8a Hwasley VL, Anderson JD, Bowman ZS, Hanley JC. Jr, Sigmund GA, van Horn D, Shellhamer DF. J. Org. Chem. 2002; 67: 6827
    • 8b Sels BF, De Vos DE, Jacobs PA. Angew. Chem. Int. Ed. 2005; 44: 310
    • 8c Sahin H, Nieger M, Bräse S. Eur. J. Org. Chem. 2009; 5576
    • 8d Krohn K, Wang S, Ahmed I, Altun S, Aslan A, Flörke U, Kock I, Schlummer S. Eur. J. Org. Chem. 2010; 4476

      Synthesis of QMAs by hydrolysis of quinone bisacetals – selected examples:
    • 9a Manning MJ, Henton DR, Swenton JS. Tetrahedron Lett. 1977; 18: 1679
    • 9b Henton DR, Chenard BL, Swenton JS. J. Chem. Soc., Chem. Commun. 1979; 326
    • 9c Chen CP, Swenton JS. J. Org. Chem. 1985; 50: 4569
    • 9d Biggs TN, Swenton JS. J. Org. Chem. 1992; 57: 5568
    • 9e Achmatowicz O, Szechner B. J. Org. Chem. 2003; 68: 2398
    • 9f Carreño MC, Somoza Á, Ribagorda M, Urbano A. Chem. Eur. J. 2007; 13: 879

      Acetalization of benzoquinones – selected examples:
    • 10a Agarwal NL, Schaefer W. J. Org. Chem. 1980; 45: 2155
    • 10b Bauman JG, Hawley RC, Rapoport H. J. Org. Chem. 1985; 50: 1569
    • 10c Baciocchi E, Giacco TD, Rol C, Sebastiani GV. Tetrahedron Lett. 1989; 30: 3537
    • 10d de March P, Escode M, Figueredo M, Font J, Alvarez-Larena A, Piniella JF. J. Org. Chem. 1995; 60: 3895
    • 10e Lee M.-D, Yang K.-M, Tsoo C.-Y, Shu C.-M, Lin L.-G. Tetrahedron 2001; 57: 8095
    • 10f Blankespoor RL, Boldenow PJ, Hansen EC, Kallemeyn JM, Lohse AG, Rubush DM, Vrieze D. J. Org. Chem. 2009; 74: 3933
    • 10g Fache M, Boutevin B, Caillol S. Green Chem. 2016; 18: 712

      Synthesis of QMAs using hypervalent iodine reagent:
    • 11a Tamura Y, Yakura T, Haruta J, Kita Y. J. Org. Chem. 1987; 52: 3927
    • 11b Kita Y, Tohma H, Kikuchi K, Inagaki M, Yakura T. J. Org. Chem. 1991; 56: 435
    • 11c Pelter A, Elgendy S. Tetrahedron Lett. 1988; 29: 677
    • 11d Pelter A, Elgendy MA. J. Chem. Soc., Perkin Trans. 1 1993; 1891
    • 11e Fleck AE, Hobart JA, Morrow GW. Synth. Commun. 1992; 22: 179
    • 11f Mitchell AS, Russell RA. Tetrahedron 1997; 53: 4387
    • 11g Camps P, González A, Muñoz-Torrero D, Simon M, Zúñiga A, Martins MA, Font-Bardia M, Solans X. Tetrahedron 2000; 56: 8141
    • 11h Moriarty RM, Prakash O. Org. React. 2001; 57: 327
    • 11i Banfield SC, Kerr MA. Can. J. Chem. 2004; 82: 131
    • 11j Tohma H, Maruyama A, Maeda A, Maegawa T, Dohi T, Shiro M, Morita T, Kita Y. Angew. Chem. Int. Ed. 2004; 43: 3595
    • 11k A review: Pouységu L, Deffieux D, Quideau S. Tetrahedron 2010; 66: 2235

      1,2-Addition – selected examples:
    • 12a Evans DA, Cain PA, Wong RY. J. Am. Chem. Soc. 1977; 99: 7083
    • 12b Capparelli MP, DeSchepper RE, Swenton JS. J. Org. Chem. 1987; 52: 4953
    • 12c Morrow GW, Wang S, Swenton JS. Tetrahedron Lett. 1988; 29: 3441
    • 12d Imamoto T, Takiyama N, Nakamura K, Hatajima T, Kamiya Y. J. Am. Chem. Soc. 1991; 113: 8516
    • 12e Wipf P, Jung J.-K. Angew. Chem., Int. Ed. Engl. 1997; 36: 764
    • 12f Biechy A, Hachisu S, Quiclet-Sire B, Richard L, Zard SZ. Angew. Chem. Int. Ed. 2008; 47: 1436
    • 12g Takada A, Hashimoto Y, Takikawa H, Hikita K, Suzuki K. Angew. Chem. Int. Ed. 2011; 50: 2297
    • 12h Yajima S, Saitoh T, Kawa K, Nakamura K, Nagase H, Einaga Y, Nishiyama S. Tetrahedron 2016; 72: 8428 ; see also ref. 9a

      1,4-Addition, selected examples:
    • 13a Foster CH, Panyne DA. J. Am. Chem. Soc. 1978; 100: 2834
    • 13b Parker KA, Kang S.-K. J. Org. Chem. 1980; 45: 1218
    • 13c Sterm AJ, Rohda JJ, Swenton JS. J. Org. Chem. 1988; 54: 4413
    • 13d Imbos R, Brilman MH. G, Pineschi M, Feringa BL. Org. Lett. 1999; 1: 623
    • 13e Grecian S, Wrobleski AD, Aubé J. Org. Lett. 2005; 7: 3167
    • 13f Giroux M.-A, Guerard KC, Beaulieu M.-A, Sabot C, Canesi S. Eur. J. Org. Chem. 2009; 3871
    • 13g Dhokale RA, Mhaske AB. J. Org. Chem. 2017; 82: 4875

      Use of QMAs as synthetic intermediate of natural products:
    • 14a Achmatowicz O, Szechner B. J. Org. Chem. 2003; 68: 2398
    • 14b Lei X, Johnson RP, Porco JA. Jr. Angew. Chem. Int. Ed. 2003; 42: 3913
    • 14c Grecian S, Aubé J. Org. Lett. 2007; 9: 3153
    • 14d Yu M, Danishefsky SJ. J. Am. Chem. Soc. 2008; 130: 2783

      Rare examples of introduction of nucleophiles into α-position of carbonyl group on QMA before our first repot in 2011:
    • 15a Coutts IG. C, Hamblin M. J. Chem. Soc., Chem. Commun. 1976; 58
    • 15b Kerns ML, Conroy SM, Swenton JS. Tetrahedron Lett. 1994; 41: 7529
    • 15c Sartori G, Maggi R, Bigi F, Giacomelli S, Porta C, Arienti A, Bocelli G. J. Chem. Soc., Perkin Trans. 1 1995; 2177
    • 15d Prakash O, Kaur H, Sharma V, Bhardwaj V, Pundeer R. Tetrahedron Lett. 2004; 45: 9065
    • 15e Mal D, Pahari P, Bidyut BK. Tetrahedron Lett. 2005; 46: 2097
    • 15f Mohr AL, Lombardo ML, Arisco TM, Morrow GW. Synth. Commun. 2009; 39: 3845
    • 15g Sloman DL, Mitasev B, Scully SS, Beutler JA, Porco JA. Jr. Angew. Chem. Int. Ed. 2011; 50: 2511

      Hydrolysis of QMA:
    • 16a Yoshimoto M, Miyazawa H, Nakao H, Shinkai K, Arakawa M. J. Med. Chem. 1979; 22: 491
    • 16b Spangler LA, Swenton JS. J. Org. Chem. 1984; 49: 1800
    • 16c Parker KA. Tetrahedron Lett. 1984; 25: 4917
    • 16d Bauman JG, Hawley RC, Rapoport H. J. Org. Chem. 1985; 50: 1569
    • 16e Omura K. J. Org. Chem. 1989; 54: 1987
    • 16f Lee M.-D, Yang K.-M, Tsoo C.-Y, Shu C.-M, Lin L.-G. Tetrahedron 2001; 57: 8095
    • 16g Aeken SV, Verbeeck S, Deblander J, Maes BU.W, Tehrani KA. Tetrahedron 2011; 67: 2269
    • 16h Heasley VL, Anderson JD, Bowman ZS, Hanley JC. Jr, Sigmund GA, Horn DV, Shellhamer DF. J. Org. Chem. 2002; 67: 6827
    • 16i Kitamura K, Ando Y, Maezawa Y, Matsumoto T, Suzuki K. Heterocycles 2015; 90: 1240
    • 16j Fukuzawa T, Ando Y, Ohmori K, Hayashi T, Suzuki K. Org. Lett. 2017; 19: 1470

      1,2-Addition to iminoquinone monoacetals:
    • 17a Swenton JS, Bonke BR, Clark WM, Chen C.-P, Martin KV. J. Org. Chem. 1990; 55: 2027
    • 17b Chuang KV, Navarro R, Reisman SE. Chem. Sci. 2011; 2: 1086
    • 17c Chuang KV, Navarro R, Reisman SE. Angew. Chem. Int. Ed. 2011; 50: 9447
    • 17d Navarro R, Reisman SE. Org. Lett. 2012; 14: 4354

      1,4-Addition to iminoquinone monoacetals under basic conditions:
    • 18a Coulibali S, Godou T, Canesi S. Org. Lett. 2016; 18: 4348
    • 18b Deruer E, Coulibali S, Boukercha S, Canesi S. J. Org. Chem. 2017; 82: 11884
    • 18c Hu X.-M, Zhou B, Yang C.-L, Lin J, Yan S.-J. ACS Omega 2018; 3: 5994

      1,4-Addition to iminoquinone monoacetals under acidic conditions:
    • 19a Hashimoto T, Nakatsu H, Takiguchi Y, Maruoka K. J. Am. Chem. Soc. 2013; 135: 160010
    • 19b Zhang Y.-C, Jiang F, Wang S.-L, Shi F, Tu S.-J. J. Org. Chem. 2014; 79: 6143
    • 19c Zhang Y.-C, Zhao J.-J, Jiang F, Sun S.-B, Shi F. Angew. Chem. Int. Ed. 2014; 53: 13912
    • 19d Jiang F, Zhang Y.-C, Sun S.-B, Zhou L.-J, Shi F. Adv. Synth. Catal. 2015; 357: 1283
    • 19e Hashimoto T, Gálvez AO, Maruoka K. J. Am. Chem. Soc. 2015; 137: 16016
    • 19f Ma C, Zhang T, Zhou J.-Y, Mei G.-J, Shi F. Chem. Commun. 2017; 53: 12124 ; see also ref. 17a
  • 20 Mixture of various products were obtained by coupling of iminoquinone monoacetal and styrene derivative: Dalidowicz P, Swenton JS. J. Org. Chem. 1993; 58: 4802 ; see also ref. 17a

    • α-Substitution of iminoquinone monoacetals:
    • 21a Yin Z, Zhang J, Wu J, Green R, Li S, Zheng S. Org. Biomol. Chem. 2014; 12: 2854
    • 21b Shu C, Liao L.-H, Liao Y.-J, Hu X.-Y, Zhang Y.-H, Yuan W.-C, Zhang X.-M. Eur. J. Org. Chem. 2014; 4467
    • 21c Sharma A, Peddinti RK. Eur. J. Org. Chem. 2017; 2230
  • 22 N-Arylation using iminoquinone monoacetals: Liu L, Chen K, Wu W.-Z, Wang P.-F, Song H.-Y, Sun H, Wen X, Xu Q.-L. Org. Lett. 2017; 19: 3823

    • Utilization of quinone mono O,S-acetals:
    • 23a Matsugi M, Gotanda K, Murata K, Kita Y. Chem. Commun. 1997; 1387
    • 23b Matsugi M, Murata K, Gotanada K, Nambu H, Anikumar G, Matumoto K, Kita Y. J. Org. Chem. 2001; 66: 2434
    • 23c Matsugi M, Murata K, Anikumar G, Nambu H, Kita Y. Chem. Pharm. Bull. 2001; 49: 1658

      Utilization of quinone mono N,O-acetals:
    • 24a Coutts IG. C, Hamblin M. J. Chem. Soc., Chem. Commun. 1976; 58
    • 24b Coutts IG. C, Hamblin MR, Welsby SE. J. Chem. Soc., Perkin Trans. 1 1981; 493
    • 24c Chudek JA, Foster R, Reid FJ. J. Chem. Soc., Chem. Commun. 1983; 726
    • 24d Pelter A, Ward RS. Tetrahedron 2001; 57: 273

      Utilization of quinone mono S,S-acetals:
    • 25a Bulman Page PC, Harkin SA, Marchington AP, van Niel MB. Tetrahedron 1989; 45: 3819
    • 25b Welker M, Woodward S, Veiros LF, Calhorda MJ. Chem. Eur. J. 2010; 16: 5620

      Aromatic Pummerer-type reactions:
    • 26a Akai S, Takeda Y, Iio K, Yoshida Y, Kita Y. J. Chem. Soc., Chem. Commun. 1995; 1013
    • 26b Akai S, Iio K, Takeda Y, Ueno H, Yokogawa K, Kita Y. J. Chem. Soc., Chem. Commun. 1995; 2319
    • 26c Kita Y, Takeda Y, Iio K, Yokogawa K, Takahashi K, Akai S. Tetrahedron Lett. 1996; 37: 7545
    • 26d Akai S, Iio K, Takeda Y, Ueno H, Kita Y. Synlett 1997; 310
    • 26e Akai S, Takeda Y, Iio K, Takahashi K, Fukuda N, Kita Y. J. Org. Chem. 1997; 62: 5526
    • 26f Kita Y, Takeda Y, Matsugi M, Iio K, Gotanda K, Murata K, Akai S. Angew. Chem., Int. Ed. Engl. 1997; 36: 1529
    • 26g Kita Y, Iio K, Kawaguchi K, Fukuda N, Takeda Y, Ueno H, Okunaka R, Higuchi K, Tsujino T, Fujioka H, Akai S. Chem. Eur. J. 2000; 6: 3897
    • 26h Akai S, Tsujino T, Fukuda N, Iio K, Takeda Y, Kawaguchi K, Naka T, Higuchi K, Kita Y. Org. Lett. 2001; 3: 4015
    • 26i Akai S, Kawashita N, Satoh H, Wada Y, Kakiguchi K, Kuriwaki I, Kita Y. Org. Lett. 2004; 6: 3793
    • 26j Akai S, Tsujino T, Fukuda N, Iio K, Takeda Y, Kawaguchi K, Naka T, Higuchi K, Akiyama E, Fujioka H, Kita Y. Chem. Eur. J. 2005; 11: 6286
    • 26k Akai S, Kawashita N, Wada Y, Satoh H, Alinejad AH, Kakiguchi K, Kuriwaki I, Kita Y. Tetrahedron Lett. 2006; 47: 1881
    • 26l Akai S, Kakiguchi K, Nakamura Y, Kuriwaki I, Dohi T, Harada S, Kubo O, Morita N, Kita Y. Angew. Chem. Int. Ed. 2007; 46: 7458

      Introduction of aromatic nucleophiles:
    • 27a Dohi T, Washimi N, Kamitanaka T, Fukushima K, Kita Y. Angew. Chem. Int. Ed. 2011; 50: 6142
    • 27b Dohi T, Kamitanaka T, Watanabe S, Hu Y, Washimi N, Kita Y. Chem. Eur. J. 2012; 18: 13614
    • 27c Kamitanaka T, Morimoto K, Tsuboshima K, Koseki D, Takamuro H, Dohi T, Kita Y. Angew. Chem. Int. Ed. 2016; 55: 15535

      [3+2] Coupling with alkene nucleophiles:
    • 28a Dohi T, Hu Y, Kamitanaka T, Washimi N, Kita Y. Org. Lett. 2011; 13: 4814
    • 28b Dohi T, Hu Y, Kamitanaka T, Kita Y. Tetrahedron 2012; 68: 8420
    • 28c Hu Y, Kamitanaka T, Mishima Y, Dohi T, Kita Y. J. Org. Chem. 2013; 78: 5530
    • 28d Kamitanaka T, Takamuro H, Shimizu K, Aramaki Y, Dohi T, Kita Y. Heterocycles 2016; 93: 295
  • 29 Introduction of silyl ketene acetals: Dohi T, Kamitanaka T, Takamuro H, Mishima Y, Washimi N, Kita Y. Tetrahedron Lett. 2015; 56: 3046
  • 30 Dohi T, Kita Y. Quinone Monoacetal Compounds in Application to Controlled Reactions with Nucleophiles . Price ER, Johnson SC. NOVA Science; New York: 2013

    • Introduction of nucleophiles into α-position of carbonyl after our first report in ref. 27a:
    • 31a Omolo JJ, Johnson MM, van Vuuren SF, de Koning CB. Bioorg. Med. Chem. Lett. 2011; 21: 7085
    • 31b Liu Y, Liu J, Wang M, Liu J, Liu Q. Adv. Synth. Catal. 2012; 354: 2678
    • 31c Kumar S, Parumala R, Peddinti RK. Org. Lett. 2013; 15: 3546
    • 31d Winter D, Endoma-Arias MA, Hudlicky T, Beutler JA, Porco AJr. J. Org. Chem. 2013; 78: 7617
    • 31e Liao L.-H, Zhang M.-M, Liao Y.-J, Yuan W.-C, Zhang X.-M. Synlett 2015; 26: 1720
    • 31f Chittimalla SK, Bandi C. Tetrahedron Lett. 2016; 57: 15
    • 31g Gao H, Xu Q.-L, Keene C, Yousufuddin M, Ess DH, Kürti L. Angew. Chem. Int. Ed. 2016; 55: 566
    • 31h Chai Z, Chen J.-N, Liu Z, Li X.-F, Yang P.-J, Hu J.-P, Yang G. Org. Biomol. Chem. 2016; 14: 1024
    • 31i Sharma S, Kumar S, Parumala R, Peddinti RK. Synlett 2017; 28: 239
    • 31j Sharma S, Kumar S, Parumala R, Peddinti RK. J. Org. Chem. 2017; 82: 9367
    • 31k Jacob A, Roy T, Kaicharla T, Biju AT. J. Org. Chem. 2017; 82: 11269
    • 31l Shen R, Zhang M, Xiao J, Dong C, Han L.-B. Green Chem. 2018; 20: 5111 ; see also ref. 21a

      For selected reviews, see:
    • 32a Bringmann G, Walter R, Weirich R. Angew. Chem., Int. Ed. Engl. 1990; 29: 977
    • 32b Bringmann G, Gulder T, Gulder TA. M, Breuning M. Chem. Rev. 2011; 111: 563
    • 32c Aldemir H, Richarz R, Gulder TA. M. Angew. Chem. Int. Ed. 2014; 53: 8286

      For selected reviews, see:
    • 33a Hassan J, Sévignon M, Gozzi C, Schulz E, Lamaire M. Chem. Rev. 2002; 102: 1359
    • 33b Bringmann G, Mortimer AJ. P, Keller PA, Gresser MJ, Garner J, Breuning M. Angew. Chem. Int. Ed. 2005; 44: 5384
    • 33c Alberico D, Scott ME, Lautens M. Chem. Rev. 2007; 107: 174
    • 33d Kozlowski MC, Morgan BJ, Linton EC. Chem. Soc. Rev. 2009; 38: 3193

      Reviews and accounts:
    • 34a Kita Y, Tohma H, Hatanaka K, Takada T, Fujita S, Mitoh S, Sakurai H, Oka S. J. Am. Chem. Soc. 1994; 116: 3684
    • 34b Eberson L, Hartshorn MP, Persson O, Radner F. Chem. Commun. 1996; 2105
    • 34c Begue J.-P, Bonnet-Delpon D, Crousse B. Synlett 2004; 18
    • 34d Dohi T, Yamaoka N, Kita Y. Tetrahedron 2010; 66: 5775

      The fluoroalcohols were recently found as key solvents in other types of couplings to form heteroaromatic biaryls, see:
    • 35a Kita Y, Morimoto K, Ito M, Ogawa C, Goto A, Dohi T. J. Am. Chem. Soc. 2009; 131: 1668
    • 35b Dohi T, Ito M, Yamaoka N, Morimoto K, Fujioka H, Kita Y. Angew. Chem. Int. Ed. 2010; 49: 3334

      Example of total synthesis of gilvocarcins:
    • 36a James CA, Snieckus V. J. Org. Chem. 2009; 74: 4080 ; and references therein

    • For a review, see:
    • 36b Hua DH, Saha S. Recl. Trav. Chim. Pays-Bas 1995; 114: 341

    • Recent reports:
    • 36c Takemura I, Imura K, Matsumoto T, Suzuki K. Org. Lett. 2004; 6: 2503
    • 36d Cordero-Vargas A, Quiclet-Sire B, Zard SZ. Org. Biomol. Chem. 2005; 3: 4432
    • 36e Cortezano-Arellano O, Cordero-Vargas A. Tetrahedron Lett. 2010; 51: 602

      For the occurrence of oxygenated terphenyl compounds in nature and their utility, see:
    • 37a Bringmann G, Günther C, Ochse M, Schupp O, Tasler S. In Progress in the Chemistry of Organic Natural Products, Vol 82. Herz W, Falk H, Kirby GW, Moore RE. Springer; Vienna: 2001: 1-293
    • 37b Liu J.-K. Chem. Rev. 2006; 106: 2209 ; see also ref. 32a

      For general synthetic methods, see:
    • 38a Kawada K, Arimura A, Tsuri T, Fuji M, Komurasaki T, Yonezawa S, Kugimiya A, Haga N, Mitsumori S, Inagaki M, Nakatani T, Tamura Y, Takechi S, Taishi T, Kishino X, Ohtani M. Angew. Chem. Int. Ed. 1998; 37: 973
    • 38b Albrecht M, Schneider M. Synthesis 2000; 1557
    • 38c Wu CJ. J, Xue CH, Kuo YM, Luo FT. Tetrahedron 2005; 61: 4735
    • 38d Goto H, Katagiri H, Furusho Y, Yashima E. J. Am. Chem. Soc. 2006; 128: 7176
    • 38e Hayashi N, Yoshikawa T, Ohnuma T, Higuchi H, Sako K, Uekusa H. Org. Lett. 2007; 9: 5417
    • 38f Lin DW, Masuda T, Biskup MB, Nelson JD, Baran PS. J. Org. Chem. 2011; 76: 1013

    • A review:
    • 38g Adrio LA, Míguez JM. A, Hii KK. Org. Prep. Proced. Int. 2009; 41: 331

      Selected reviews and accounts:
    • 39a Furusho Y, Yashima E. Chem. Rec. 2007; 7: 1
    • 39b Baldini L, Casnati A, Sansone F, Ungaro R. Chem. Soc. Rev. 2007; 36: 254
    • 39c Nishikubo T, Kudo H. J. Photopolym. Sci. Technol. 2011; 24: 9
    • 39d For recent examples including the use of oligophenols and related compounds see
    • 39e Reihmann MH, Ritter H. Macromol. Chem. Phys. 2000; 201: 1593
    • 39f Turac E, Surme Y, Sahmetlioglu E, Varol R, Narin I, Toppare L. J. Appl. Polym. Sci. 2008; 110: 564
    • 39g Prokofieva A, Dechert S, Große C, Sheldrick GM, Meyer F. Chem. Eur. J. 2009; 15: 4994
    • 39h Kaya İ, Yılırım M, Aydın A, Şenol D. React. Funct. Polym. 2010; 70: 815
    • 39i Furusho Y, Miwa K, Asai R, Yashima E. Chem. Eur. J. 2011; 17: 13954
    • 39j Mora-Pale M, Kwon SJ, Linhardt RJ, Dordick JS. Free Radical Biol. Med. 2012; 52: 962

      Synthesis of well-defined phenol-based oligoarenes:
    • 40a Manabe K, Ishikawa S. Chem. Commun. 2008; 3829 ; and references cited therein
    • 40b Minato A, Suzuki K, Tamao K, Kumada M. J. Chem. Soc., Chem. Commun. 1984; 511
    • 40c Cheng W, Snieckus V. Tetrahedron Lett. 1987; 28: 5097
    • 40d Zhang J, Moore JS, Xu Z, Aguirre RA. J. Am. Chem. Soc. 1992; 114: 2273

      Importance of phenol cross-coupling products:
    • 41a Rappoport Z. The Chemistry of Phenols . Wiley; Chichester: 2003
    • 41b Malkowsky IM, Rommel CE, Wedeking K, Frchlich R, Bergander K, Nieger M, Quaiser C, Griesbach U, Pgtter H, Waldvogel SR. Eur. J. Org. Chem. 2006; 241
    • 41c Kirste A, Hayashi S, Schnakenburg G, Malkowsky IM, Stecker F, Fischer A, Fuchigami T, Waldvogel SR. Chem. Eur. J. 2011; 17: 14164

      General synthetic method of phenol cross-coupling products:
    • 42a Brunel JM. Chem. Rev. 2005; 105: 857
    • 42b Ashenhurst JA. Chem. Soc. Rev. 2010; 39: 540
    • 42c Wang H. Chirality 2010; 22: 827
    • 42d Wendlandt AE, Suess AM, Stahl SS. Angew. Chem. Int. Ed. 2011; 50: 11062 ; see also ref. 33d

      Direct C–H couplings:
    • 43a Satoh T, Kawamura Y, Miura M, Nomura M. Angew. Chem., Int. Ed. Engl. 1997; 36: 1740
    • 43b Satoh T, Kawamura Y, Miura M, Nomura M. Chem. Lett. 1998; 931
    • 43c Saito S, Kano T, Muto H, Nakadai M, Yamamoto H. J. Am. Chem. Soc. 1999; 121: 8943
    • 43d Bedford RB, Coles SJ, Hursthouse MB, Limmert ME. Angew. Chem. Int. Ed. 2003; 42: 112
    • 43e Bedford RB, Limmert ME. J. Org. Chem. 2003; 68: 8669
    • 43f Oi S, Watanabe S, Fukita S, Inoue Y. Tetrahedron Lett. 2003; 44: 8665
    • 43g Wetzel A, Pratsch G, Kolb R, Heinrich MR. Chem. Eur. J. 2010; 16: 2547

      Oxidative coupling of phenols:
    • 44a Egami H, Katsuki T. J. Am. Chem. Soc. 2009; 131: 6082
    • 44b Egami H, Matsumoto K, Oguma T, Kunisu T, Katsuki T. J. Am. Chem. Soc. 2010; 132: 13633
    • 44c Holtz-Mulholland M, de Leseleuc M, Collins SK. Chem. Commun. 2013; 49: 1835
    • 44d Lee YE, Cao T, Torruellas C, Kozlowski MC. J. Am. Chem. Soc. 2014; 136: 6782
    • 44e Elsler B, Schollmeyer D, Dyballa KM, Franke R, Waldvogel SR. Angew. Chem. Int. Ed. 2014; 53: 5210
    • 44f More NY, Jeganmohan M. Org. Lett. 2015; 17: 3042
    • 44g Libman A, Shalit H, Vainer Y, Narute S, Kozuch S, Pappo D. J. Am. Chem. Soc. 2015; 137: 11453
    • 44h Morimoto K, Sakamoto K, Ohshika T, Dohi T, Kita Y. Angew. Chem. Int. Ed. 2016; 55: 3652

      For early reports, see:
    • 45a Petrov AD, Sadykh-Zade SI, Filatova EI. Zh. Obshch. Khim. 1959; 29: 2936
    • 45b Baukov JI, Burlachenko GS, Lutsenko IF. J. Organomet. Chem. 1965; 3: 478
    • 45c Lutsenko IF, Baukor YI, Burlachenko GS, Khasapor BN. J. Organomet. Chem. 1966; 5: 20
    • 45d Arth GE, Poos GI, Lukes RM, Robinson FM, Johns WF, Feurer M, Sarett LH. J. Am. Chem. Soc. 1954; 76: 1715
    • 45e Arens JF. Recl. Trav. Chim. Pays-Bas 1955; 74: 769

      For selected reviews and accounts, see:
    • 46a Brownbridge P. Synthesis 1983; 1
    • 46b Brownbridge P. Synthesis 1983; 85
    • 46c Kuwajima I, Nakamura E. Acc. Chem. Res. 1985; 18: 181
    • 46d Carreira EM. In Comprehensive Asymmetric Catalysis I–III, Vol. 3. Jacobsen EN, Pfaltz A, Yamamoto H. Springer; New York: 1999: 997-1065
    • 46e Kobayashi S, Manabe K, Ishitani H, Matsuo J.-I. In Science of Synthesis, Vol. 4. Fleming I. Thieme; Stuttgart: 2002: 317-369
    • 46f Kobayashi S, Yoo W.-J, Yamashita Y. In Comprehensive Chirality, Vol. 4. Carreira EM, Yamamoto H. Elsevier; Amsterdam: 2012: 168-197
    • 46g Matsuo J.-I, Murakami M. Angew. Chem. Int. Ed. 2013; 52: 9109

      For background information about our chemistry on the silyl and acyl transfer agents, see the following accounts and reviews:
    • 47a Kita Y. Yakugaku Zasshi 1986; 106: 269
    • 47b Kita Y, Tamura O, Tamura Y. J. Synth. Org. Chem. Jpn. 1986; 44: 1118
    • 47c Tamura Y, Kita Y. J. Synth. Org. Chem. Jpn. 1988; 46: 205
    • 47d Kita Y, Shibata N. J. Synth. Org. Chem. Jpn. 1994; 52: 746
    • 47e Kita Y, Shibata N. Synlett 1996; 289
    • 47f Kita Y. Yakugaku Zasshi 1997; 117: 282
    • 47g Kita Y, Akai S. Chem. Rec. 2004; 4: 363
    • 48a Kita Y, Haruta J, Segawa J, Tamura Y. Tetrahedron Lett. 1979; 20: 4311
    • 48b Kita Y, Haruta J, Fujii T, Segawa J, Tamura Y. Synthesis 1981; 451
    • 48c Kita Y, Yasuda H, Sugiyama Y, Fukada F, Haruta J, Tamura Y. Tetrahedron Lett. 1983; 24: 1273
    • 49a Kita Y, Segawa J, Haruta J, Tamura Y. Tetrahedron Lett. 1980; 21: 3779
    • 49b Kita Y, Segawa J, Haruta J, Yasuda H, Tamura Y. J. Chem. Soc., Perkin Trans. 1 1982; 1099
    • 50a Kita Y, Yasuda H, Haruta J, Segawa J, Tamura Y. Synthesis 1982; 1089
    • 50b Kita Y, Yasuda H, Tamura O, Itoh F, Tamura Y. Tetrahedron Lett. 1984; 25: 4681
    • 50c Kita Y, Tamura O, Yasuda H, Itoh F, Tamura Y. Chem. Pharm. Bull. 1985; 33: 4235
    • 50d Kita Y, Tohma H, Inagaki M, Hatanaka K, Yakura T. J. Am. Chem. Soc. 1992; 114: 2175
    • 50e Kita Y, Shibata N, Kawano N, Tohjo T, Fujimori C, Ohishi H. J. Am. Chem. Soc. 1994; 116: 5116

    • For our recent report including the use of silyl transfer agent, see:
    • 50f Dohi T, Uchiyama T, Yamashita D, Washimi N, Kita Y. Tetrahedron Lett. 2011; 52: 2212
    • 51a Kita Y, Yasuda H, Tamura O, Itoh F, Ke YY, Tamura Y. Tetrahedron Lett. 1985; 26: 5777
    • 51b Kita Y, Tamura O, Itoh F, Yasuda H, Kishino H, Ke YY, Tamura Y. J. Org. Chem. 1988; 53: 554
    • 52a Kita Y, Ito F, Tamura O, Ke YY, Tamura Y. Tetrahedron Lett. 1987; 28: 1431
    • 52b Kita Y, Tamura O, Itoh F, Kishino H, Miki T, Kohno M, Tamura Y. J. Chem. Soc., Chem. Commun. 1988; 761
    • 52c Kita Y, Itoh F, Tamura O, Ke YY, Miki T, Tamura Y. Chem. Pharm. Bull. 1989; 37: 1446

      Selected recent examples:
    • 53a Matsushita K, Suzuki K, Ohmori K. Synlett 2017; 28: 944
    • 53b Finkbeiner P, Murai K, Röpke M, Sarpong R. J. Am. Chem. Soc. 2017; 139: 11349
    • 53c Sato S, Sakata K, Hashimoto Y, Takikawa H, Suzuki K. Angew. Chem. Int. Ed. 2017; 56: 12608
    • 53d Assal ME, Peixoto PA, Conffinier R, Garnier T, Deffieux D, Miqueu K, Sotiropoulos J.-M, Pouységu L, Quideau S. J. Org. Chem. 2017; 82: 11816
    • 53e Suzuki T, Watanabe S, Uyanik M, Ishihara K, Kobayashi S, Tanino K. Org. Lett. 2018; 20: 3919

      Dimerization of o-QMAs:
    • 54a Arjona O, Medel R, Plumet J. Tetrahedron Lett. 1999; 40: 8431
    • 54b Chittimalla SK, Liao C.-C. Tetrahedron 2003; 59: 4039
    • 54c McGrath NA, Bartlett ES, Sittihan S, Njardarson JT. Angew. Chem. Int. Ed. 2009; 48: 8543
    • 54d Chittimalla SK, Bandi C. RSC Adv. 2013; 3: 13663 ; see also ref. 53d
  • 55 Kita Y, Tohma H, Inagaki M, Hatanaka K. Heterocycles 1992; 33: 503
  • 56 Tohma H, Watanabe H, Takizawa S, Maegawa T, Kita Y. Heterocycles 1999; 51: 1785
  • 57 Ito M, Kubo H, Itani I, Morimoto K, Dohi T, Kita Y. J. Am. Chem. Soc. 2013; 135: 14078

    • For selected reviews, see:
    • 58a Crich D, Banerjee A. Acc. Chem. Res. 2007; 40: 151
    • 58b Ruiz-Sanchis P, Savina SA, Albericio F, Alvarez M. Chem. Eur. J. 2011; 17: 1388
    • 58c Ishikura M, Abe T, Choshi T, Hibino S. Nat. Prod. Rep. 2015; 32: 1389