Synlett 2019; 30(08): 885-892
DOI: 10.1055/s-0037-1611696
account
© Georg Thieme Verlag Stuttgart · New York

A “Green” Primary Explosive: Design, Synthesis, and Testing

Jie Tang
,
Dan Chen
,
Gen Zhang
,
Hongwei Yang*
School of Chemical Engineering, Nanjing University of Science and Technology, Xiaolingwei 200, Nanjing, ­Jiangsu, P. R. of China   Email: hyang@mail.njust.edu.cn   Email: gcheng@mail.njust.edu.cn
,
Guangbin Cheng*
School of Chemical Engineering, Nanjing University of Science and Technology, Xiaolingwei 200, Nanjing, ­Jiangsu, P. R. of China   Email: hyang@mail.njust.edu.cn   Email: gcheng@mail.njust.edu.cn
› Author Affiliations
This work was supported by the National Natural Science Foundation of China (No. 21676147, 21875110), the Science Challenge Project (TZ2018004), and the Natural Science Foundation of Jiangsu Province (BK20150770).
Further Information

Publication History

Received: 21 October 2018

Accepted after revision: 22 November 2018

Publication Date:
05 February 2019 (online)


Abstract

This account presents the synthesis and the characterization of triazine-tetrazine nitrogen heterocyclic compounds. Some compounds were characterized by NMR and IR spectroscopy, mass spectrometry, differential scanning calorimetry (DSC), and single-crystal X-ray diffraction. The physical and chemical properties were obtained by EXPLO5 v6.01, gas pycnometer, BAM Fallhammer, BAM Friction tester, and several detonation tests. The results show that the new metal-free polyazido compound 3,6-bis-[2-(4,6-diazido-1,3,5-triazin-2-yl)-diazenyl]-1,2,4,5-tetrazine (4) with high heat of formation (2820 kJ mol–1/6130.2 kJ kg–1) and excellent detonation velocity and pressure (D = 8602 m s–1, P = 29.4 GPa) could be used as ingredient in secondary explosives. 3,6-Bis-[2-(4,6-diazido-1,3,5-triazin-2-yl)-hydrazinyl]-1,2,4,5-tetrazine (3) can detonate research department explosive (RDX, cyclonite) as a primer (Δf H m = 2114 kJ mol–1/4555.2 kJ kg–1, D = 8365 m s–1, P = 26.8 GPa), whose initiation capacity is comparable to that of the traditional primary explosive Pb(N3)2. Therefore, the metal-free compound 3 can potentially replace lead-based-primary explosives, which would be advantageous for the environment.

1 Introduction

2 Strategies to Form High-Nitrogen Compounds with High Heat of Formation

3 Metal-Free Strategies to Prepare Primary Explosives

4 Concluding Remarks

 
  • References

  • 1 He CL, Shreeve JM. Angew. Chem. Int. Ed. 2016; 55: 772
  • 2 Klapötke TM, Piercey DG, Mehta N, Oyler KD, Jorgensen M, Lenahan S, Salan JS, Fronabarger JW, Williams MD. Z. Anorg. Allg. Chem. 2013; 639: 681
  • 3 Fischer D, Klapötke TM, Stierstorfer J. Angew. Chem. Int. Ed. 2014; 53: 8172
  • 4 Tang YX, He CL, Mitchell LA, Parrish DA, Shreeve JM. Angew. Chem. Int. Ed. 2016; 55: 5565
  • 5 Matyáš R, Pachman J. Primary Explosives . Springer; Berlin, Heidelberg: 2013
  • 6 Fronabarger JW, Williams MD, Sanborn WB, Bragg JG, Parrish DA, Bichayc M. Propellants Explos. Pyrotech. 2011; 36: 541
  • 7 Fischer D, Klapötke TM, Stierstorfer J. Angew. Chem. Int. Ed. 2015; 54: 10299
  • 8 Chen D, Yang HW, Yi ZX, Xiong HL, Zhang L, Zhu SG, Cheng GB. Angew. Chem. Int. Ed. 2018; 57: 2081
  • 9 Fischer D, Gottfried JL. Angew. Chem. Int. Ed. 2016; 55: 16132
  • 10 Singh RP, Gao H, Meshri DT, Shreeve JM. High Energy Density Materials. Springer; Berlin, Heidelberg: 2007
  • 11 Huynh MV, Hiskey MA, Hartline EL, Montoya DP, Gilardi R. Angew. Chem. Int. Ed. 2004; 116: 5032
  • 12 Christe KO, Wilson WW, Sheehy JA, Boatz JA. Angew. Chem. Int. Ed. 1999; 38: 2004
  • 13 Klapötke TM, Martin FA, Stierstorfer J. Angew. Chem. Int. Ed. 2011; 50: 4227
  • 14 Tang YX, Yang HW, Wu B, Ju XH, Lu CX, Cheng GB. Angew. Chem. Int. Ed. 2013; 52: 4875
  • 15 Xu Z, Cheng GB, Yang HW, Ju XH, Yin P, Zhang JH, Shreeve JM. Angew. Chem. Int. Ed. 2017; 56: 5877
  • 16 Kerth J, Lobbecke S. Propellants Explos. Pyrotech. 2002; 27: 111
  • 17 Frumkin AE, Strelenko AM. Russ. Chem. Bull. 2002; 49: 482
  • 18 Chavez DE, Hiskey MA, Naud DL. Org. Lett. 2004; 6: 2889
  • 19 Chavez DE, Hiskey MA, Naud DL. Propellants Explos. Pyrotech. 2004; 29: 209
  • 20 Clayden J, Rowbottom SM, Hutchings MG. Tetrahedron Lett. 2009; 50: 3923
  • 21 Blotny G. Tetrahedron 2006; 62: 9507
  • 22 Kolesinska B, Kaminski ZJ. Tetrahedron 2009; 65: 3573
  • 23 Blotny G. Tetrahedron 2006; 62: 9507
  • 24 Chavez DE, Hiskey MA. Heterocycl. Chem. 1998; 35: 1329
  • 25 Ye CF, Gao HX, Boatz JA, Drake GW, Twamley B, Shreeve JM. Angew. Chem. Int. Ed. 2006; 45: 7262
  • 26 Huynh MH. V, Hiskey MA. Angew. Chem. Int. Ed. 2004; 43: 4924
  • 27 Huynh MH. V, Hiskey MA, Chavez DE. J. Am. Chem. Soc. 2005; 127: 12537
  • 28 Qi C, Li SH, Li YC, Wang Y, Zhao XX, Pang SP. Chem. Eur. J. 2012; 18: 16562
  • 29 Sućeska M. EXPLO5 6 01. Brodarski Institute; Zagreb Croatia: 2013
  • 30 Khasainov B, Comet M, Veyssiere B, Spitzer D. Propellants Explos. Pyrotech. 2017; 42: 547
  • 31 Tests were conducted according to the PRC GJB 5891 27-2006.
  • 32 Tests were conducted according to the PRC GJB 5891 19-2006.
  • 33 Fischer D, Klapötke TM, Stierstorfer J. Angew. Chem. Int. Ed. 2014; 53: 8172