Synlett 2019; 30(05): 525-531
DOI: 10.1055/s-0037-1611693
synpacts
© Georg Thieme Verlag Stuttgart · New York

Self-Immolative Prodrugs: Effective Tools for the Controlled Release of Sulfur Signaling Species

Kearsley M. Dillon
a   Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA   Email: jbmatson@vt.edu
b   Virginia Tech Center for Drug Discovery, Blacksburg, Virginia, 24061, USA
,
Chadwick R. Powell
a   Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA   Email: jbmatson@vt.edu
b   Virginia Tech Center for Drug Discovery, Blacksburg, Virginia, 24061, USA
,
John B. Matson*
a   Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA   Email: jbmatson@vt.edu
b   Virginia Tech Center for Drug Discovery, Blacksburg, Virginia, 24061, USA
› Author Affiliations
This work was supported by the National Science Foundation (DMR-1454754) and the National Institutes of Health (R01GM123508). We also thank 3M for support of this work through a Non-Tenured Faculty Award to J.B.M.
Further Information

Publication History

Received: 08 November 2018

Accepted after revision: 27 November 2018

Publication Date:
09 January 2019 (online)


These authors contributed equally to this work

Abstract

H2S, persulfides (R–SSH), and related sulfur species have recently received attention due to the pronounced physiological effects they elicit. Delivering sulfur signaling molecules in a controlled manner presents many challenges, as many available donors have short half-lives, lack water solubility, and exhibit poor trigger specificity. Self-immolative prodrugs provide a unique ability to impart stability to H2S precursors and persulfides while allowing for trigger specificity by tuning the functional group installed on the self-immolative linker. This strategy has proven successful in delivering sulfur signaling species under specific conditions and may lead to the further elucidation of persulfide interactions within biological systems, affording effective therapeutics.

1 Introduction

2 Currently Available Persulfide Donors

3 BDP-NAC: An ROS-Responsive Persulfide Prodrug

4 Conclusion