CC BY-ND-NC 4.0 · Synlett 2019; 30(04): 454-458
DOI: 10.1055/s-0037-1611664
letter
Copyright with the author

Palladium(II)-Catalyzed C(sp3)–H Activation of N,O-Ketals towards a Method for the β-Functionalization of Ketones

Danny K. H. Ho
,
Jonas Calleja
,
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK   Email: mjg32@cam.ac.uk
› Author Affiliations
We acknowledge the EPRSC (EP/I00548X/1 & EP/N031792/1) for funding to (D.K.H.H., J.C. and M.J.G.) for funding.
Further Information

Publication History

Received: 23 November 2018

Accepted after revision: 07 January 2019

Publication Date:
05 February 2019 (online)


Published as part of the 30 Years SYNLETT – Pearl Anniversary Issue

Abstract

A method for the formal β-functionalization of aliphatic ketones via a palladium-catalyzed sp3 C–H activation pathway is reported. An N,O-ketal directs an aliphatic C–H carbonylation to form γ-lactams which upon hydrolysis generate γ-keto carboxylic acids. This C–C bond-forming reaction is tolerant of a range of functional groups, enabling the synthesis of a range of synthetically important building blocks. Furthermore, the concepts underlying this transformation have also enabled the development of a related C–H alkenylation process to highly functionalised heterocycles.

Supporting Information

 
  • References and Notes

    • 1a Shilov AE, Shul’pin GB. Chem. Rev. 1997; 446: 391
    • 1b Jia C, Kitamura T, Fujiwara Y. Acc. Chem. Res. 2001; 34: 633
    • 1c Godula K, Sames D. Science 2006; 312: 67
    • 1d Bergman RG. Nature 2007; 446: 391
    • 1e Davies HM. L, Manning JR. Nature 2008; 451: 417
    • 1f Mkhalid IA. I, Barnard JH, Marder TB, Murphy JM, Hartwig JF. Chem. Rev. 2010; 110: 890
    • 1g Lyons TW, Sanford MS. Chem. Soc. Rev. 2010; 110: 1147
    • 1h Davies HM. L, Du Bois J, Yu J.-Q. Chem. Soc. Rev. 2011; 40: 1855
    • 1i Wencel-Delord J, Dröge T, Liu F, Glorius F. Chem. Soc. Rev. 2011; 40: 4740
    • 1j Yamaguchi J, Yamaguchi AD, Itami K. Angew. Chem. Int. Ed. 2012; 51: 8960
    • 1k McMurray L, O’Hara F, Gaunt MJ. Chem. Soc. Rev. 2011; 40: 1885
    • 2a Jazzar R, Hitche J, Renaudat A, Sofack-Kreutzer J, Baudoin O. Chem. Eur. J. 2010; 16: 2654
    • 2b Giri R, Shi B.-F, Engle KM, Maugel N, Yu J.-Q. Chem Soc, Rev. 2009; 38: 3242
    • 2c Dastbaravardeh N, Christakakou M, Haider M, Schnürch M. Synthesis 2014; 46: 1421

    • See also:
    • 2d Chu JC. K, Rovis T. Angew. Chem. Int. Ed. 2018; 57: 62

      For β-functionalization of ketones, see:
    • 3a Huang Z, Dong G. J. Am. Chem. Soc. 2013; 135: 17747
    • 3b Pirnot MT, Rankic DA, Martin DB. C, MacMillan DW. C. Science 2013; 339: 1593
  • 4 Giri R, Maugel N, Li J.-J, Wang D.-H, Breazzano SP, Saunders LB, Yu J.-Q. J. Am. Chem. Soc. 2007; 129: 3510

    • For representative examples, see:
    • 5a Wasa M, Chan KS. L, Zhang X.-G, He J, Miura M, Yu J.-Q. J. Am. Chem. Soc. 2012; 134: 18570
    • 5b He J, Li S, Deng Y, Fu H, Laforteza BN, Spangler JE, Homs A, Yu J.-Q. Science 2014; 343: 1216
    • 5c Zhu R.-Y, He J, Wang X.-C, Yu J.-Q. J. Am. Chem. Soc. 2014; 136: 13194
    • 5d Chen G, Shigenari T, Jain P, Zhang Z, Jin Z, He J, Li S, Mapelli C, Miller MM, Poss MA, Scola PM, Yeung K.-S, Yu J.-Q. J. Am. Chem. Soc. 2015; 137: 3338

      For an example of sp3 C–H functionalization at the β-position of an oxime-masked ketone, see:
    • 6a Desai LV, Hull KL, Sanford MS. J. Am. Chem. Soc. 2004; 126: 9542
    • 6b Gao P, Guo W, Xue J, Zhao Y, Yuan Y, Xia Y, Shi Z. J. Am. Chem. Soc. 2015; 137: 12231

      For a seminal example of a palladium-catalysed β-carbonylation of amides, see:
    • 7a Yoo EJ, Wasa M, Yu J.-Q. J. Am. Chem. Soc. 2010; 132: 17378

    • For examples of C(sp3)–H carbonylation of alklyamine derivatives, see:
    • 7b Hernando H, Villalva J, Martínez ÁM, Alonso I, Rodríguez N, Gómez Arrayás R, Carretero JC. ACS Catal. 2016; 6: 6868
    • 7c Wang P.-L, Li Y, Wu Y, Li C, Lan Q, Wang X.-S. Org. Lett. 2015; 17: 3698
    • 7d Wang C, Zhang L, Chen C, Han J, Yao Y, Zhao Y. Chem. Sci. 2015; 6: 4610
    • 8a Manzer LE. Appl. Catal., A 2004; 272: 249
    • 8b Minetto G, Raveglia LF, Sega A, Taddei M. Eur. J. Org. Chem. 2005; 5277
    • 8c Lange J.-P, Vestering JZ, Haan RJ. Chem. Commun. 2007; 3488
    • 8d Sulur M, Sharma P, Ramakrishnan R, Naidu R, Merifield E, Gill DM, Clarke AM, Thomson C, Butters M, Bachu S, Benison CH, Dokka N, Fong ER, Hose DR. J, Howell GP, Mobberley SE, Morton SC, Mullen AK, Rapai J, Tejas B. Org. Process Res. Dev. 2012; 16: 1746
    • 9a McNally A, Haffemayer B, Collins BS. L, Gaunt MJ. Nature 2014; 510: 129
    • 9b Smalley AP, Gaunt MJ. J. Am. Chem. Soc. 2015; 137: 10632
    • 10a Calleja J, Pla D, Gorman TW, Domingo V, Haffemayer B, Gaunt MJ. Nat. Chem. 2015; 7: 1009
    • 10b Png ZM, Carbrera-Pardo JR, Peiro CadhinaJ, Gaunt MJ. Chem. Sci. 2018; 9: 7628

      We recently reported a distinct pathway for C–H carbonylation, which proceeds via a different mechanism to that operating here, see:
    • 11a Willcox D, Chappell B, Hogg KF, Calleja J, Smalley AP, Gaunt MJ. Science 2016; 354: 851
    • 11b Cabrera-Pardo JR, Trowbridge A, Nappi M, Gaunt MJ. Angew. Chem. Int. Ed. 2017; 56: 11958
    • 11c Hogg KF, Trowbridge A, Alvarez-Perez A. Chem. Sci. 2017; 8: 8198

      For representative examples, see:
    • 12a Saget T, Perez D, Cramer N. Org. Lett. 2013; 15: 1354
    • 12b Hoshiya N, Kobayashi T, Arisawa M, Shuto S. Org. Lett. 2013; 15: 6202
  • 13 General Experimental Procedure for a Representative C–H Carbonylation to 5l To a flame-dried round-bottom flask, equipped with a stir bar, was charged the oxazolidine (0.20 mmol), palladium(II) acetate (0.02 mmol, 0.1 equiv), silver(I) acetate (0.40 mmol, 2.0 equiv), and toluene (0.05 M). The reaction flask was evacuated and back-filled with carbon monoxide (3 times, balloon). A balloon filled with carbon monoxide was fitted, and then the flask was placed in a pre-heated oil bath at 120 °C and heated at this temperature for 16 h under vigorous stirring. The reaction mixture was then cooled to room temperature and filtered through a small pad of Celite®. The filtrate was concentrated in vacuo and purified by flash chromatography (eluting with 0–20% ethyl acetate in petroleum ether) provided the desired lactam 5l (54 mg, 79%). Rf (ethyl acetate in petroleum ether, 25%): 0.23. IR (film): νmax = 2976, 2952, 1773, 1704, 1466, 1396, 1366, 1273, 1124, 1058, 1002, 882, 721, 667 cm–1. 1H NMR (500 MHz, CDCl3): δ = 7.85 (dd, J = 5.5, 3.0 Hz, 2 H), 7.73 (dd, J = 5.5, 3.0 Hz, 2 H), 4.00 (d, J = 9.2 Hz, 1 H), 3.94 (d, J = 8.9 Hz, 1 H), 3.81–3.64 (m, 2 H), 2.63 (ddd, J = 17.0, 12.3, 8.0 Hz, 1 H), 2.56–2.40 (m, 1 H), 2.20 (ddd, J = 12.3, 8.0, 0.8 Hz, 1 H), 2.02–1.66 (m, 5 H), 1.55 (s, 3 H), 1.40 (s, 3 H). 13C NMR (126 MHz, CDCl3): δ = 173.5, 168.3, 134.1, 132.0, 123.3, 102.6, 81.6, 58.1, 37.9, 35.4, 33.0, 32.5, 26.7, 24.5, 23.5. HRMS (ESI): m/z calcd for C19H23N2O4: 343.1652; found [M + H]+: 343.1656.
  • 14 He C, Gaunt MJ. Chem. Sci. 2017; 8: 3586