CC BY-ND-NC 4.0 · Synlett 2019; 30(04): 429-432
DOI: 10.1055/s-0037-1611663
letter
Copyright with the author

Air-Stable Secondary Phosphine Oxides for Nickel-Catalyzed Cross-Couplings of Aryl Ethers by C–O Activation

Debasish Ghorai
a   Institut für Organische und Biomolekulare Chemie, Georg-August-Universität, Tammannstraße 2, 37077 Göttingen, Germany   Email: Lutz.Ackermann@chemie.uni-goettingen.de
,
Joachim Loup
a   Institut für Organische und Biomolekulare Chemie, Georg-August-Universität, Tammannstraße 2, 37077 Göttingen, Germany   Email: Lutz.Ackermann@chemie.uni-goettingen.de
,
Giuseppe Zanoni
b   Department of Chemistry, University of Pavia, Viale Taramelli 10, 27100 Pavia, Italy
,
a   Institut für Organische und Biomolekulare Chemie, Georg-August-Universität, Tammannstraße 2, 37077 Göttingen, Germany   Email: Lutz.Ackermann@chemie.uni-goettingen.de
› Author Affiliations
Generous support by the European Research Council under the European Community’s Seventh Framework Program (FP7 2007-2013)/ERC Grant agreement no. 307535, and the Regione Lombardia – Cariplo Foundation is gratefully acknowledged.
Further Information

Publication History

Received: 02 December 2018

Accepted after revision: 06 January 2019

Publication Date:
15 January 2019 (online)


Published as part of the 30 Years SYNLETT – Pearl Anniversary Issue

Abstract

Air- and moisture-stable secondary phosphine oxides (SPOs) enabled nickel-catalyzed Kumada–Corriu cross-couplings of various arylmethyl ethers at room temperature by challenging C–O activation.

Supporting Information

 
  • References and Notes

    • 1a Cherney AH, Kadunce NT, Reisman SE. Chem. Rev. 2015; 115: 9587
    • 1b Johansson Seechurn C. C, Kitching MO, Colacot TJ, Snieckus V. Angew. Chem. Int. Ed. 2012; 51: 5062
    • 1c Modern Arylation Methods . 2nd ed; Ackermann L. Wiley-VCH; Weinheim: 2009
    • 1d Beller M, Bolm C. Transition Metals for Organic Synthesis . Wiley-VCH; Weinheim: 2004
    • 1e Miyaura N, Suzuki A. Chem. Rev. 1995; 95: 2457
  • 2 Kozhushkov SI, Potukuchi HK, Ackermann L. Catal. Sci. Technol. 2013; 3: 562
    • 3a Wenkert E, Michelotti EL, Swindell CS, Tingoli M. J. Org. Chem. 1984; 49: 4894
    • 3b Wenkert E, Michelotti EL, Swindell CS. J. Am. Chem. Soc. 1979; 101: 2246

      Representative reviews:
    • 4a Tobisu M, Chatani N. Acc. Chem. Res. 2015; 48: 1717
    • 4b Su B, Cao Z.-C, Shi Z.-J. Acc. Chem. Res. 2015; 48: 886
    • 4c Tollefson EJ, Hanna LE, Jarvo ER. Acc. Chem. Res. 2015; 48: 2344
    • 4d Tasker SZ, Standley EA, Jamison TF. Nature 2014; 509: 299
    • 4e Cornella J, Zarate C, Martin R. Chem. Soc. Rev. 2014; 43: 8081
    • 4f Li BJ, Yu DG, Sun CL, Shi ZJ. Chem. Eur. J. 2011; 17: 1728
    • 4g Rosen BM, Quasdorf KW, Wilson DA, Zhang N, Resmerita A.-M, Garg NK, Percec V. Chem. Rev. 2011; 111: 1346
    • 4h Yu D.-G, Li B.-J, Shi Z.-J. Acc. Chem. Res. 2010; 43: 1486

    • Selected examples:
    • 4i Wang T.-H, Ambre R, Wang Q, Lee W.-C, Wang P.-C, Liu Y, Zhao L, Ong T.-G. ACS Catal. 2018; 8: 11368
    • 4j Cao Z.-C, Luo Q.-Y, Shi Z.-J. Org. Lett. 2016; 18: 5978
    • 4k Zhang J, Xu J, Xu Y, Sun H, Shen Q, Zhang Y. Organometallics 2015; 34: 5792
    • 4l Iglesias MJ, Prieto A, Nicasio MC. Org. Lett. 2012; 14: 4318
    • 4m Xie L.-G, Wang Z.-X. Chem. Eur. J. 2011; 17: 4972
    • 4n Dankwardt JW. Angew. Chem. Int. Ed. 2004; 43: 2428

    • For general reviews on nickel catalyzed transformations, see:
    • 4o Castro LC. M, Chatani N. Chem. Lett. 2015; 44: 410
    • 4p Yamaguchi J, Muto K, Itami K. Eur. J. Org. Chem. 2013; 19
    • 4q Nakao Y. Chem. Rec. 2011; 11: 242, and references cited therein
  • 5 Netherton MR, Fu GC. Org. Lett. 2001; 3: 4295

    • Select reviews:
    • 6a Herault D, Nguyen DH, Nuel D, Buono G. Chem. Soc. Rev. 2015; 44: 2508
    • 6b Shaikh TM, Weng C.-M, Hong F.-E. Coord. Chem. Rev. 2012; 256: 771
    • 6c Ackermann L. Isr. J. Chem. 2010; 50: 652
    • 6d Ackermann L. Synthesis 2006; 1557
    • 6e Dubrovina NV, Börner A. Angew. Chem. Int. Ed. 2004; 43: 5883
    • 7a Ghorai D, Müller V, Keil H, Stalke D, Zanoni G, Tkachenko BA, Schreiner PR, Ackermann L. Adv. Synth. Catal. 2017; 359: 3137
    • 7b Hu C.-Y, Chen Y.-Q, Lin G.-Y, Huang M.-K, Chang Y.-C, Hong F.-E. Eur. J. Inorg. Chem. 2016; 3131
    • 7c Cano I, Tschan MJ. L, Martínez-Prieto LM, Philippot K, Chaudret B, van Leeuwen PW. N. M. Catal. Sci. Technol. 2016; 6: 3758
    • 7d Wellala NP, Guan H. Org. Biomol. Chem. 2015; 13: 10802
    • 7e Cano I, Huertos MA, Chapman AM, Buntkowsky G, Gutmann T, Groszewicz PB, van Leeuwen PW. N. M. J. Am. Chem. Soc. 2015; 137: 7718
    • 7f Ackermann L, Kapdi AR, Fenner S, Kornhaass C, Schulzke C. Chem. Eur. J. 2011; 17: 2965
    • 7g Ackermann L, Potukuchi HK, Kapdi AR, Schulzke C. Chem. Eur. J. 2010; 16: 3300
    • 7h Ackermann L, Vicente R, Hofmann N. Org. Lett. 2010; 11: 4274
    • 7i Achard T, Giordano L, Tenaglia A, Gimbert Y, Buono G. Organometallics 2010; 29: 3936
    • 7j Christiansen A, Selent D, Spannenberg A, Baumann W, Franke R, Börner A. Organometallics 2010; 29: 3139
    • 7k Christiansen A, Li C, Garland M, Selent D, Ludwig R, Spannenberg A, Baumann W, Franke R, Börner A. Eur. J. Org. Chem. 2010; 2733
    • 7l Ackermann L, Barfüßer S. Synlett 2009; 808
    • 7m Yang DX, Colletti SL, Wu K, Song M, Li GY, Shen HC. Org. Lett. 2009; 11: 381
    • 7n Billingsley KL, Buchwald SL. Angew. Chem., Int. Ed. Engl. 2008; 47: 4695
    • 7o Ackermann L, Born R, Spatz JH, Meyer D. Angew. Chem. Int. Ed. 2005; 44: 7216
    • 9a Sauermann N, Loup J, Kootz D, Berkessel A, Ackermann L. Synthesis 2017; 49: 3476
    • 9b Song W, Ackermann L. Angew. Chem. Int. Ed. 2012; 51: 8251
    • 9c Ackermann L, Pospech J, Potukuchi HK. Org. Lett. 2012; 14: 2146
    • 9d Ackermann L, Althammer A, Born R. Angew. Chem. Int. Ed. 2006; 45: 2619
    • 9e Moselage M, Sauermann N, Richter S. C, Ackermann L. Angew. Chem. Int. Ed. 2015; 54: 6352
  • 10 Ackermann L. Synlett 2007; 507
  • 11 Representative Experimental Procedure and Characterization DataA mixture of 2-methoxynaphthalene (1a) (79 mg, 0.5 mmol), [NiCl2(DME)] (6.0 mg, 0.025 mmol, 5.0 mol%), and L8 (8.0 mg, 0.05 mmol, 10.0 mol%) was stirred in THF (1.5 mL) for 2 min at ambient temperature under N2. Then, p-TolMgBr (1.0 m in THF, 0.75 mL, 0.75 mmol) was added, and the resulting solution was stirred for 16 h at ambient temperature. To the reaction was added aqueous HCl (1 m, 5 mL) and then EtOAc (5 mL), and the separated aqueous phase was extracted with EtOAc (2 × 5 mL). The combined organic layers were dried with anhydrous Na2SO4 and concentrated in vacuo. The remaining residue was purified by column chromatography on silica gel (n-hexane) to yield 2a (98 mg, 90%) as a colorless solid. Mp 93–95 °C. IR (ATR): 3054, 3024, 1501, 1351, 893, 856, 811, 748 cm−1. 1H NMR (300 MHz, CDCl3): δ = 8.14 (d, J = 1.4 Hz, 1 H), 8.03–7.93 (m, 3 H), 7.85 (dd, J = 8.5, 1.9 Hz, 1 H), 7.74 (d, J = 8.1 Hz, 2 H), 7.64–7.54 (m, 2 H), 7.40 (dd, J = 8.5, 0.6 Hz, 2 H), 2.53 (s, 3 H). 13C NMR (75 MHz, CDCl3): δ = 138.5 (Cq), 138.3 (Cq), 137.2 (Cq), 133.8 (Cq), 132.5 (Cq), 129.6 (CH), 128.4 (CH), 128.2 (CH), 127.7 (CH), 127.3 (CH), 126.3 (CH), 125.8 (CH), 125.6 (CH), 125.5 (CH), 21.2 (CH3). MS (EI): m/z (relative intensity) = 218 [M]+ (100), 217 (41), 202 (35). HRMS (EI): m/z [M]+ calcd for [C17H14]+: 218.1096; found: 218.1094.