Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
CC BY-ND-NC 4.0 · Synthesis 2019; 51(05): 1139-1156
DOI: 10.1055/s-0037-1611654
DOI: 10.1055/s-0037-1611654
feature
General Synthetic Approach to Rotenoids via Stereospecific, Group-Selective 1,2-Rearrangement and Dual SNAr Cyclizations of Aryl Fluorides
This work was supported by JSPS KAKENHI Grant Numbers JP16H06351, JP16H01137, JP16H04107, JP18H04391 and Nagase Science and Technology Foundation.Further Information
Publication History
Received: 13 December 2018
Accepted: 17 December 2018
Publication Date:
23 January 2019 (online)
Dedicated to the memory of the late Professor Sho Ito
Published as part of the 50 Years SYNTHESIS – Golden Anniversary Issue
Abstract
A general synthetic approach to rotenoids is described, featuring 1) stereospecific, group-selective 1,2-rearrangements of epoxy alcohols, and 2) SNAr oxy-cyclizations of aryl fluorides. The common intermediate epoxyketone, en route to (–)-rotenone and (–)-deguelin, was prepared from d-araboascorbic acid in five steps. Also described is the conversion of (–)-deguelin into oxidized congeners, (–)-tephrosin and (+)-12a-epi-tephrosin.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1611654.
- Supporting Information
-
References
- 1 Barton SD, Nakanishi K. Amsterdam: Elsevier; 1999. ( Comprehensive Natural Products Chemistry, Vol. 8; ). 340-343
- 2 Geoffroy E. Ann. Ann. Inst. Colon. Marseilles 1896; 2: 1
- 3a Takei S, Miyajima S, Ohno M. Ber. Dtsch. Chem. Ges. 1932; 65: 1041
- 3b Butenandt A, McCartney W. Justus Liebigs Ann. Chem. 1932; 494: 17
- 3c LaForge FB, Haller HL. J. Am. Chem. Soc. 1932; 54: 810
- 4 Büchi G, Crombie L, Gondin PJ, Kaltenbronn JS, Siddalingaiah KS, Whiting DA. J. Chem. Soc. 1961; 2843
- 5a Clark EP. J. Am. Chem. Soc. 1931; 53: 313
- 5b Clark EP. J. Am. Chem. Soc. 1931; 53: 729
- 5c Clark EP. J. Am. Chem. Soc. 1932; 54: 3000
- 5d Butenandt A, Hilgetag G. Justus Liebigs Ann. Chem. 1932; 495: 172
- 6a Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT. Nat. Neurosci. 2000; 3: 1301
- 6b Caboni P, Sherer TB, Zhang N, Taylor G, Na HM, Greenamyre JT, Casida JE. Chem. Res. Toxicol. 2004; 1540
- 7a Hsu Y.-C, Chiang J.-H, Yu C.-S, Hsia T.-C, Wu RS.-C, Lien J.-C, Lai K.-C, Yu F.-S, Chung J.-G. Environ. Toxicol. 2015; 84
- 7b Choi S, Choi Y, Dat NT, Hwangbo C, Lee JJ, Lee JH. Cancer Lett. 2010; 293: 23
- 8a Dewick PM. Medicinal Natural Products Chemistry . Wiley; New York: 2002: 154-157
- 8b Hashim MF, Hakamatsuka T, Ebizuka Y, Sankawa U. FEBS Lett. 1990; 271: 219
- 9 Miyano M, Kobatashi A, Matsui M. Bull. Agric. Chem. Soc. 1960; 24: 540
- 10a Fukami K, Oda J, Sakata G, Nakajima M. Bull. Agric. Chem. Soc. Jpn. 1960; 24: 327
- 10b Fukami K, Oda J, Sakata G, Nakajima M. Agric. Biol. Chem. 1961; 25: 252
- 10c Omokawa H, Yamashita K. Agric. Biol. Chem. 1974; 38: 1731
- 10d Pastine SJ, Sames D. Org. Lett. 2003; 5: 4053
- 10e Xu S, Wang G, Xu F, Li W, Lin A, Yao H, Xu J. J. Nat. Prod. 2018; 81: 1055
- 11 Sasaki I, Yamashita K. Agric. Biol. Chem. 1979; 43: 137
- 12 Anzeveno PB. J. Org. Chem. 1979; 44: 2578
- 13a Garcia J, Barluenga S, Beebe K, Neckers L, Winssinger N. Chem. Eur. J. 2010; 16: 9767
- 13b Farmer RL, Scheidt KL. Chem. Sci. 2013; 4: 3304
- 13c Lee S, An H, Chang DH, Jang J, Kim K, Sim J, Leea J, Suh Y.-G. Chem. Commun. 2015; 51: 9026
- 14 Nakamura K, Ohmori K, Suzuki K. Angew. Chem. Int. Ed. 2016; 56: 182; and references cited therein
- 15a Pollak PI, Curtin DY. J. Am. Chem. Soc. 1950; 72: 961
- 15b Curtin DY, Pollak PI. J. Am. Chem. Soc. 1951; 73: 992
- 16a Seeman JI. Chem. Rev. 1983; 83: 83
- 16b Seeman JI. J. Chem. Educ. 1986; 63: 42
- 16c Curtin DY. Rec. Chem. Prog. 1954; 15: 111
- 17 Pocker Y, Ronald BP. J. Org. Chem. 1970; 35: 3362
- 18 Benjamin BM, Schaeffer HJ, Collins CJ. J. Am. Chem. Soc. 1957; 79: 6160
- 19 Suzuki K, Katayama E, Tsuchihashi G. Tetrahedron Lett. 1983; 24: 4997
- 20 Suzuki K, Tomooka K, Shimazaki M, Tsuchihashi G. Tetrahedron Lett. 1985; 26: 4781
- 21a Maruoka K, Hasegawa M, Yamamoto H, Suzuki K, Shimazaki M, Tsuchihashi G. J. Am. Chem. Soc. 1986; 108: 3827
- 21b Suzuki K, Miyazawa M, Shimazaki M, Tsuchihashi G. Tetrahedron Lett. 1986; 27: 6237
- 21c Suzuki K, Miyazawa M, Shimazaki M, Tsuchihashi G. Tetrahedron 1988; 44: 4061
- 21d Suzuki K, Matsumoto T, Tomooka K, Matsumoto K, Tsuchihashi G. Chem. Lett. 1987; 16: 113
- 21e Nagasawa T, Taya K, Kitamura M, Suzuki K. J. Am. Chem. Soc. 1996; 118: 8949
- 22a Suzuki K, Matsumoto T, Tomooka K, Matsumoto K, Tsuchihashi K. Chem. Lett. 1987; 113
- 22b Saito T, Suzuki T, Akiyama C, Ochiai T, Takeuchi K, Matsumoto T, Suzuki K. J. Am. Chem. Soc. 1998; 120: 11633
- 22c Suzuki K, Tomooka K, Katayama E, Matsumoto T, Tsuchihashi G. J. Am. Chem. Soc. 1986; 108: 5221
- 23a Suzuki K, Katayama K, Tsuchihashi G. Tetrahedron Lett. 1984; 25: 1817
- 23b Suzuki K, Katayama E, Matsumoto T, Tsuchihashi G. Tetrahedron Lett. 1984; 25: 3715
- 24a Ohmori K, Yano T, Suzuki K. Org. Biomol. Chem. 2010; 8: 2693
- 24b Stadlbauer S, Ohmori K, Hattori F, Suzuki K. Chem. Commun. 2012; 48: 8425
- 25 Nakamura K, Ohmori K, Suzuki K. Chem. Commun. 2015; 51: 7012
- 26a Harris JM, Neustadt BR, Hao J, Stamford AW. Patent WO2009111449, 2009
- 26b The original procedure employed Fe(III) as the catalyst, which was too reactive, leading to over-reaction (see experimental section).
- 27a Oishi T, Nakata T. Acc. Chem. Res. 1984; 17: 338
- 27b Okamoto S, Yoshino T, Tsujiyama H, Sato F. Tetrahedron Lett. 1991; 32: 5793
- 27c Adachi M, Higuchi K, Thasana N, Yamada H, Nishikawa T. Org. Lett. 2012; 14: 114
- 28a Cohen N, Banner BL, Laurenzano AJ, Carozza L. Org. Synth. 1985; 63: 127
- 28b By modifying the purification protocol, the yield was substantially improved (65 → 94%).
- 29 Lundt I, Madsen R. Synthesis 1992; 1129
- 30a Kvíčala J, Vlasáková R, Plocar J, Paleta O, Pelter A. Collect. Czech. Chem. Commun. 2000; 65: 772
- 30b The original procedure (using KF only) led to an incomplete reaction; full conversion was achieved by using K2CO3 as a base.
- 31 Finholt AE, Bond AC, Schlesinger HI. J. Am. Chem. Soc. 1947; 69: 1199
- 32a Adinarayana D, Radhakrushniah M, Rajasekhara J, Campbell R, Crombie L. J. Chem. Soc. C 1971; 29
- 32b Nakatani N, Matsui M. Agric. Biol. Chem. 1997; 41: 601
- 32c Crombie L, Kilbee GW, Proudfoot G, Whiting DA. J. Chem. Soc., Perkin Trans. 1 1991; 3143
- 33a Atkins GM. Jr, Burgess EM. J. Am. Chem. Soc. 1968; 90: 4744
- 33b Burgess EM, Penton HR. Jr, Taylor EA. J. Org. Chem. 1973; 38: 26
- 34 Blaskó G, Shieh H.-L, Pezzuto JM, Cordell GA. J. Nat. Prod. 1989; 52: 1363
- 35 A sample of (–)-1 was purchased from Sigma-Aldrich.
- 36 Krebs FC, Larsen PS, Larsen J, Jacobsen CS, Boutton C, Thorup N. J. Am. Chem. Soc. 1997; 119: 1208
- 37 Iyer M, Trivedi GK. Synth. Commun. 1990; 20: 1347
- 38 Mikami T, Asano H, Mitsunobu O. Chem. Lett. 1987; 16: 2033
- 39 Oikawa Y, Yoshioka T, Yonemitsu O. Tetrahedron Lett. 1982; 23: 885
- 40a Dagne E, Yenesew A, Waterman PG. Phytochemistry 1989; 28: 3207
- 40b Luyenge L, Lee I.-K, Mar W, Fong HH. S, Pezzuto JM, Kinghorn AD. Phytochemistry 1994; 36: 1523
- 40c Deardorff K, Ray W, Winterstein E, Brown M, McCornack J, Cardenas-Garcia B, Jones K, McNutt S, Fulkerson S, Ferreira D, Gény C, Chen X, Belofsky B, Dondji B. J. Nat. Prod. 2016; 79: 2296
- 41 Russell DA, Freudenreich JJ, Ciardiello JJ, Sore HF, Spring DR. Org. Biomol. Chem. 2017; 15: 1593
- 42a Fang N, Casida JE. Proc. Natl. Acad. Sci. U.S.A. 1998; 95: 3380
- 42b Fang N, Casida JE. J. Agric. Food Chem. 1999; 47: 2130
- 42c Wangensteen H, Alamgir M, Rajia S, Samuelsen AB, Malterud KE. Planta Med. 2005; 71: 754
- 43 3: [α]D 20 –4.7 (c 0.20, CHCl3); 44: [α]D 23 +1.1 (c 0.10, CHCl3).