CC BY-ND-NC 4.0 · Synthesis 2019; 51(05): 1216-1224
DOI: 10.1055/s-0037-1611653
feature
Copyright with the author

Complementary Reactivity of 1,6-Enynes with All-Metal Aromatic Trinuclear Complexes and Carboxylic Acids

Chiara Cecchini
a   Università di Parma, Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, 17/A Parco Area delle Scienze, 43124 Parma, Italy   Email: giovanni.maestri@unipr.it
,
Matteo Lanzi
a   Università di Parma, Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, 17/A Parco Area delle Scienze, 43124 Parma, Italy   Email: giovanni.maestri@unipr.it
,
Gianpiero Cera
a   Università di Parma, Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, 17/A Parco Area delle Scienze, 43124 Parma, Italy   Email: giovanni.maestri@unipr.it
,
b   UPMC Sorbonne Université, IPCM (UMR CNRS 8232), 4 place Jussieu, C. 229, 75005 Paris, France   Email: max.malacria@upmc.fr
,
a   Università di Parma, Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, 17/A Parco Area delle Scienze, 43124 Parma, Italy   Email: giovanni.maestri@unipr.it
› Author Affiliations
Research on metal aromaticity was supported by Ministero dell’Istruzione, dell’Università e della Ricerca (MIUR; grant AROMA-TriP and Departments of Excellence framework).
Further Information

Publication History

Received: 30 November 2018

Accepted: 18 December 2018

Publication Date:
18 January 2019 (online)


Published as part of the 50 Years SYNTHESISGolden Anniversary Issue

Abstract

The distinct reactivity of 1,6-enynes in the presence of a trinuclear metal complex activated by a carboxylic acid is presented. The triplatinum catalyst enables the cyclization of the substrate and subsequent incorporation of a nucleophile in the final product. In contrast, sequential cyclization/double bond shift occurs under analogous conditions in the presence of the corresponding tripalladium complex.

Supporting Information

 
  • References


    • For reviews, see:
    • 1a Boldyrev AI, Wang L.-S. Chem. Rev. 2005; 105: 3716
    • 1b Tsipis CA. Coord. Chem. Rev. 2005; 249: 2740
    • 1c Mercero JM, Boldyrev AI, Merino G, Ugalde JM. Chem. Soc. Rev. 2015; 44: 6519
    • 1d Fernandez I, Frenking G, Merino G. Chem. Soc. Rev. 2015; 44: 6452
    • 1e Jena P, Castleman AW. Proc. Natl. Acad. Sci. U.S.A. 2006; 103: 10560
    • 1f von Schleyer PR, Jiao HJ. Pure Appl. Chem. 1996; 68: 209
    • 2a Boldyrev AI, Popov IA, Starikova AA, Steglenko DV. Chem. Eur. J. 2018; 24: 292
    • 2b Liu C, Popov IA, Chen Z, Boldyrev AI, Sun Z.-M. Chem. Eur. J. 2018; 24: 14583
    • 2c Cao C.-S, Shi Y, Xu H, Zhao B. Coord. Chem. Rev. 2018; 365: 122
    • 3a Zhai H.-J, Averkiev BB, Zubarev DY, Wang L.-S, Boldyrev AI. Angew. Chem. Int. Ed. 2007; 46: 4277
    • 3b Knecht S, Jensen HJ. A, Saue T. Nat. Chem. 2019; 11: 40
    • 4a Soya T, Mori H, Osuka A. Angew. Chem. Int. Ed. 2018; 57: 15882
    • 4b Oh J, Sung YM, Kim W, Mori S, Osuka A, Kim D. Angew. Chem. Int. Ed. 2016; 55: 6487
    • 4c Furukawa S, Fujita M, Kanatomi Y, Minoura M, Hatanaka M, Morokuma K, Ishimura K, Saito M. Commun. Chem. 2018; 1: 60
    • 4d Saito M, Sakaguchi M, Tajima T, Ishimura K, Nagase S, Hada M. Science 2010; 328: 339
    • 4e Ishikawa Y, Kimura S, Takase K, Yamamoto K, Kurashige Y, Yanai T, Murahashi T. Angew. Chem. Int. Ed. 2015; 54: 2482
    • 4f Freitag K, Gemel C, Jerabek P, Oppel MI, Seidel RW, Frenking G, Banh H, Dilchert K, Fischer RA. Angew. Chem. Int. Ed. 2015; 54: 4370
    • 4g Wang Y, Monfredini A, Deyris P.-A, Blanchard F, Derat E, Maestri G, Malacria M. Chem. Sci. 2017; 8: 7394
    • 5a Wang Y, Deyris P.-A, Cañeque T, Blanchard F, Li Y, Bigi F, Maggi R, Blanchard S, Maestri G, Malacria M. Chem. Eur. J. 2015; 21: 12271
    • 5b Blanchard S, Fensterbank L, Gontard G, Lacôte E, Maestri G, Malacria M. Angew. Chem. Int. Ed. 2014; 53: 1987
    • 6a Lanzi M, Cañeque T, Marchio L, Maggi R, Bigi F, Malacria M, Maestri G. ACS Catal. 2018; 8: 144
    • 6b Monfredini A, Santacroce V, Marchio L, Maggi R, Bigi F, Maestri G, Malacria M. ACS Sustainable Chem. Eng. 2017; 5: 8205
    • 6c Monfredini A, Santacroce V, Deyris P.-A, Maggi R, Bigi F, Maestri G, Malacria M. Dalton Trans. 2016; 45: 15786
    • 6d Deyris P.-A, Cañeque T, Wang L, Retailleau P, Bigi F, Maggi R, Maestri G, Malacria M. ChemCatChem 2015; 7: 3266

    • Isolobal analogues can trigger unusual Suzuki and Kumada couplings:
    • 6e Fu F, Xiang J, Cheng H, Cheng L, Chong H, Wang S, Li P, Wei S, Zhu M, Li Y. ACS Catal. 2017; 7: 1860
    • 6f Diehl CJ, Scattolin T, Englert U, Schoenebeck F. Angew. Chem. Int. Ed. 2019; 58: 211
    • 7a Fürstner A, Davies PW, Gress T. J. Am. Chem. Soc. 2005; 127: 8244
    • 7b Mamane V, Gress T, Krause H, Fürstner A. J. Am. Chem. Soc. 2004; 126: 8654
    • 7c Fürstner A, Stelzer F, Szillat H. J. Am. Chem. Soc. 2001; 123: 11863
    • 7d Fürstner A, Szillat H, Stelzer F. J. Am. Chem. Soc. 2000; 122: 6785
    • 8a Nevado C, Echavarren AM. Chem. Eur. J. 2005; 11: 3155
    • 8b Nevado C, Ferrer C, Echavarren AM. Org. Lett. 2004; 6: 3191
    • 8c Méndez M, Mũnoz MP, Echavarren AM. J. Am. Chem. Soc. 2000; 122: 11549

      For selected reviews, see:
    • 9a Fürstner A. Chem. Soc. Rev. 2009; 38: 3208
    • 9b Fürstner A, Davies PW. Angew. Chem. Int. Ed. 2007; 46: 3410
    • 9c Blaszykowski C, Harrak Y, Brancour C, Nakama K, Dhimane A.-L, Fensterbank L, Malacria M. Synthesis 2007; 2037
    • 9d Zhang L, Sun J, Kozmin SA. Adv. Synth. Catal. 2006; 348: 2271

    • For a seminal contribution, see:
    • 9e Chatani N, Inoue H, Ikeda T, Murai S. J. Org. Chem. 2000; 65: 4913
    • 9f Zriba R, Gandon V, Aubert C, Fensterbank L, Malacria M. Chem. Eur. J. 2008; 14: 1482
    • 9g Marion F, Coulomb J, Courillon C, Fensterbank L, Malacria M. Org. Lett. 2004; 6: 1509
    • 9h Harrak Y, Blaszykowski C, Bernard M, Cariou K, Mainetti E, Mouriès V, Dhimane A.-L, Fensterbank L, Malacria M. J. Am. Chem. Soc. 2004; 126: 8656
    • 9i Mainetti E, Mouriès V, Fensterbank L, Malacria M, Marco-Contelles J. Angew. Chem. Int. Ed. 2002; 41: 2132

    • For recent examples, see:
    • 9j Jullien H, Brissy D, Sylvain R, Retailleau P, Naubron J.-V, Gladiali S, Marinetti A. Adv. Synth. Catal. 2011; 353: 1109
    • 9k Ni Z, Giordano L, Tenaglia A. Chem. Eur. J. 2014; 20: 11703
    • 9l Pradal A, Gladiali S, Michelet V, Toullec PY. Chem. Eur. J. 2014; 20: 7128

      For recent examples of cycloisomerizations with palladium, see:
    • 10a Qiu Y.-A, Yang B, Jiang T, Zhu C, Backvall J.-E. Angew. Chem. Int. Ed. 2017; 56: 3221
    • 10b Petrone DA, Franzoni I, Ye J, Rodriguez JF, Poblador-Bahamonde AI, Lautens M. J. Am. Chem. Soc. 2017; 139: 3546

    • For reviews, see:
    • 10c Düfert A, Werz DB. Chem. Eur. J. 2016; 22: 16718
    • 10d Tietze LF, Kinzel T. Pure Appl. Chem. 2007; 79: 629
    • 11a Cera G, Lanzi M, Balestri D, Della Ca’ N, Maggi R, Bigi F, Malacria M, Maestri G. Org. Lett. 2018; 20: 3220
    • 11b Cera G, Lanzi M, Bigi F, Maggi R, Malacria M, Maestri G. Chem. Commun. 2018; 54: 14021
    • 11c Rodriguez JF, Burton KI, Franzoni I, Petrone DA, Scheipers I, Lautens M. Org. Lett. 2018; 20: 6915
    • 11d Haydl AM, Breit B, Lang T, Krische MJ. Angew. Chem. Int. Ed. 2017; 56: 11312
    • 11e Peacock MD, Roos CB, Hartwig JF. ACS Cent. Sci. 2016; 2: 647
    • 12a Trost BM. Acc. Chem. Res. 1990; 23: 34
    • 12b Trost BM, Lautens M. J. Am. Chem. Soc. 1985; 107: 1781
  • 13 Gorin DJ, Toste FD. Nature 2007; 446: 395
  • 14 Hashmi AS. K. Acc. Chem. Res. 2014; 47: 864
  • 15 Johnson JA, Petersen BM, Kormos A, Echeverría E, Chen Y.-S, Zhang J. J. Am. Chem. Soc. 2016; 138: 10293
  • 16 Wang W, Yang J, Wang F, Shi M. Organometallics 2011; 30: 3859