Synthesis 2019; 51(17): 3336-3344
DOI: 10.1055/s-0037-1611536
paper
© Georg Thieme Verlag Stuttgart · New York

Microwave-Assisted CuCl-Catalyzed Three-Component Reactions of Alkynes, Aldehydes, and Amino Alcohols

Xiang Li
,
Ning Chen  *
State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. of China   Email: chenning@mail.buct.edu.cn   Email: jxxu@mail.buct.edu.cn
,
Jiaxi Xu*
State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. of China   Email: chenning@mail.buct.edu.cn   Email: jxxu@mail.buct.edu.cn
› Author Affiliations
This work was supported by the National Natural Science Foundation of China (Grant Nos. 21702014, 21572017 and 21772010), the National Basic Research Program of China (Grant No. 2013CB328905) and the Fundamental Research Funds for the Central Universities (XK1802-6).
Further Information

Publication History

Received: 11 February 2019

Accepted after revision: 12 April 2019

Publication Date:
08 May 2019 (online)


Abstract

A microwave (MW)-assisted three-component coupling of amino alcohols, aldehydes, and alkynes is developed under catalysis by CuCl. Compared with thermal conditions, MW irradiation greatly increases the reaction efficiency. The reactions of various primary N-alkyl/arylamino alcohols, aliphatic/aromatic aldehydes, and alkynes are systematically investigated, affording the desired products in moderate to good yields. Notably, acetylene is also an effective reactant under the current MW-assisted conditions.

Supporting Information

 
  • References

    • 1a Boulton PH, Davis BA, Durden DA, Dyck LE, Juorio AV, Li X.-M, Paterson IA, Yu PH. Drug Dev. Res. 1997; 42: 150
    • 1b Peshkov VA, Pereshivko OP, Van der Eycken EV. Chem. Soc. Rev. 2012; 41: 3790
    • 1c Lauder K, Toscani A, Scalacci N, Castagnolo D. Chem. Rev. 2017; 117: 14091
  • 2 Guan Z, Chai X.-Y, Yu S.-C, Hu H.-G, Jiang Y.-Y, Meng Q.-G, Wu Q.-Y. Chem. Biol. Drug Des. 2010; 76: 496
  • 3 Kawai K, Endo Y, Asano T, Amano S, Sawada K, Ueo N, Takahashi N, Sonoda Y, Nagai M, Kamei N, Nagata N. J. Med. Chem. 2014; 57: 9844
  • 4 Schmitt ML, Hauser A.-T, Carlino L, Pippel M, Schulz-Fincke J, Metzger E, Willmann D, Yiu T, Barton M, Schüle R, Sippl W, Jung M. J. Med. Chem. 2013; 56: 7334
    • 5a Nieman JA, Nair SK, Heasley SE, Schultz BL, Zerth HM, Nugent RA, Chen K, Stephanski KJ, Hopkins TA, Knechtel ML, Oien NL, Wieber JL, Wathen MW. Bioorg. Med. Chem. Lett. 2010; 20: 3039
    • 5b Efthymiou TC, Huynh V, Oentoro J, Peel B, Desaulniers J.-P. Bioorg. Med. Chem. Lett. 2012; 22: 1722
    • 5c Hendricks JA, Hanson RN, Amolins M, Mihelcic JM, Blagg BS. Bioorg. Med. Chem. Lett. 2013; 23: 3635
    • 5d Viart HM. F, Larsen TS, Tassone C, Andresen TL, Clausen MH. Chem. Commun. 2014; 50: 7800
    • 5e Lv X.-Q, Ying H.-Z, Ma X.-D, Qiu N, Wu P, Yang B, Hu Y.-Z. Eur. J. Med. Chem. 2015; 99: 36
    • 5f Zakaryan GB, Hayotsyan SS, Attaryan HS, Hasratyan GV. Russ. J. Gen. Chem. 2016; 86: 1195
    • 6a Jung FH, Pasquet GR. WO2003055491, 2003
    • 6b Heron NM, Jung FH, Pasquet GR, Mortlock AA. WO2004058781, 2005
    • 6c Karpov MV, Khramchikhin AV, Suvorova IV, Piterskaya YL, Stadnichuk MD. Russ. J. Gen. Chem. 2007; 77: 899
    • 6d Obika S, Yasui Y, Yanada R, Takemoto Y. J. Org. Chem. 2008; 73: 5206
  • 7 Caporusso AM, Geri R, Polizzi C, Lardicci L. Tetrahedron Lett. 1991; 32: 7471
    • 8a Fischer C, Carreira EM. Org. Lett. 2001; 3: 4319
    • 8b Jiang B, Si Y.-G. Tetrahedron Lett. 2003; 44: 6767
    • 8c Traverse JF, Hoveyda AH, Snapper ML. Org. Lett. 2003; 5: 3273
    • 8d Koradin C, Gommermann N, Polborn K, Knochel P. Chem. Eur. J. 2003; 9: 2797
    • 9a Imada Y, Yuasa M, Nakamura I, Murahashi S.-I. J. Org. Chem. 1994; 59: 2282
    • 9b Mahrwald R, Quint S. Tetrahedron Lett. 2001; 42: 1655
    • 10a Dyatkin AB, Rivero RA. Tetrahedron Lett. 1998; 39: 3647
    • 10b Xu X.-B, Liang L.-F, Liu J, Yang J.-Y, Mai L.-G, Li YZ. Tetrahedron Lett. 2009; 50: 57
    • 10c Pereshivko OP, Peshkov VA, Van der Eycken EV. Org. Lett. 2010; 12: 2638
    • 10d Cheng M, Zhang Q, Hu X.-Y, Li B.-G, Ji J.-X, Chan AS. C. Adv. Synth. Catal. 2011; 353: 1274
    • 10e Tang X.-J, Kuang J.-Q, Ma S.-M. Chem. Commun. 2013; 49: 8976
    • 10f Zhao Y.-W, Song Q.-L. Org. Chem. Front. 2016; 3: 294
    • 10g Li S.-F, Yang Q.-J, Wang J. Tetrahedron Lett. 2016; 57: 4500
    • 10h Cai Y.-J, Tang X.-J, Ma S.-M. Chem. Eur. J. 2016; 22: 2266
    • 10i Van Beek WE, Van Stappen J, Franck P, Abbaspour Tehrani K. Org. Lett. 2016; 18: 4782
    • 11a Wei C.-M, Li C.-J. J. Am. Chem. Soc. 2003; 125: 9584
    • 11b Wei C.-M, Li Z.-G, Li C.-J. Org. Lett. 2003; 5: 4473
    • 11c Wei C.-M, Li Z.-G, Li C.-J. Synlett 2004; 1472
    • 11d Bonfield ER, Li C.-J. Adv. Synth. Catal. 2008; 350: 370
    • 11e Zeng T.-Q, Chen W.-W, Cirtiu CM, Moores A, Song G, Li C.-J. Green Chem. 2010; 12: 570
    • 11f Chen W.-W, Bi H.-P, Li C.-J. Synlett 2010; 475
    • 11g Uhlig N, Li C.-J. Org. Lett. 2012; 14: 3000
    • 11h Huang J.-L, Gray DG, Li C.-J. Beilstein J. Org. Chem. 2013; 9: 1388
    • 11i Sharma A, Mejia D, Regnaud A, Uhlig N, Li C.-J, Maysinger D, Kakkar A. ACS Macro Lett. 2014; 3: 1079
  • 12 Namitharan K, Pitchumani K. Eur. J. Org. Chem. 2010; 411
    • 13a Li P.-H, Zhang YC, Wang L. Chem. Eur. J. 2009; 15: 2045
    • 13b Zhang Y, Li P, Wang L. J. Heterocycl. Chem. 2011; 48: 153
    • 14a Ramu E, Varala R, Sreelatha N, Adapa SR. Tetrahedron Lett. 2007; 48: 7184
    • 14b Eagalapati NP, Rajack A, Murthy YL. N. J. Mol. Catal. A: Chem. 2014; 381: 126
    • 15a Syeda Huma HZ, Halder R, Singh Kalra S, Das J, Iqbal J. Tetrahedron Lett. 2002; 43: 6485
    • 15b Yoo W.-J, Li C.-J. Adv. Synth. Catal. 2008; 350: 1503
    • 15c Feng H.-D, Zhao P.-F, Sun Z.-H. Tetrahedron Lett. 2015; 56: 5676
  • 16 Li C.-J, Wei C.-M. Chem. Commun. 2002; 268
  • 17 Li Z.-G, Wei C.-M, Chen L, Varma RS, Li C.-J. Tetrahedron Lett. 2004; 45: 2443
  • 18 Lo VK. Y, Liu Y.-G, Wong MK, Che CM. Org. Lett. 2006; 8: 1529
  • 19 Sakaguchi S, Kubo T, Ishii Y. Angew. Chem. Int. Ed. 2001; 40: 2534
  • 20 Zhang Y.-C, Li P.-H, Wang M, Wang L. J. Org. Chem. 2009; 74: 4364
  • 21 Li P.-H, Wang L. Chin. J. Chem. 2005; 23: 1076
    • 22a Li X.-H, Xu J.-X. Curr. Microwave Chem. 2017; 4: 339
    • 22b Li X.-H, Xu J.-X. Tetrahedron 2016; 72: 5515
    • 22c Li X.-H, Xu J.-X. Curr. Microwave Chem. 2017; 2: 158
    • 22d Hu L.-B, Wang Y.-K, Li B.-N, Du D.-M, Xu J.-X. Tetrahedron 2007; 63: 9387
    • 22e Yang D.-Q, Xu J.-X. Curr. Microwave Chem. 2018; 5: 120
    • 23a Chen X.-P, Xu J.-X. Tetrahedron Lett. 2017; 58: 1651
    • 23b Li S.-Q, Chen X.-P, Xu J.-X. Tetrahedron 2018; 74: 1613
    • 24a Shi L, Tu Y.-Q, Wang M, Zhang F.-M, Fan C.-A. Org. Lett. 2004; 6: 1001
    • 24b Ju YH, Li C.-H, Varma RS. QSAR Comb. Sci. 2004; 23: 891
  • 25 Bariwal BJ. S, Ermolat’ev DS, Van der Eycken EV. Chem. Eur. J. 2010; 16: 3281
    • 26a Ermolat’ev DS, Feng HD, Song G.-H, Van der Eycken EV. Eur. J. Org. Chem. 2014; 5346
    • 26b Zhao P.-F, Feng H.-D, Pan H.-R, Sun Z.-H, Tong MC. Org. Chem. Front. 2017; 4: 37
  • 27 Naresh G, Kant R, Narender T. Org. Lett. 2014; 16: 4528
  • 28 Price GA, Brisdon AK, Flower KR, Pritchard RG, Quayle P. Tetrahedron Lett. 2014; 55: 151
  • 29 Xiong X.-Q, Chen H.-X, Zhu RJ. Catal. Commun. 2014; 54: 94
    • 30a Trose M, Dell’Acqua M, Pedrazzini T, Pirovano V, Gallo E, Rossi E, Caselli A, Abbiati G. J. Org. Chem. 2014; 79: 7311
    • 30b Beillard A, Métro T.-X, Bantreil X, Martinez J, Lamaty F. Eur. J. Org. Chem. 2017; 4642
    • 30c Rasheed OK, Bawn C, Davies D, Raftery J, Vitorica-Yrzebal I, Pritchard R, Zhou H, Quayle P. Eur. J. Org. Chem. 2017; 5252
    • 31a Li D, Dai X.-P, Zhang X, Zhuo H.-Y, Jiang Y, Yu Y.-B, Zhang P.-F, Huang X.-L, Wang H. J. Catal. 2017; 348: 276
    • 31b Patel SB, Vasava DV. ChemistrySelect 2018; 3: 471
  • 32 Kashid VS, Balakrishna MS. Catal. Commun. 2018; 103: 78
    • 33a Glaser C. Justus Liebigs Ann. Chem. 1870; 154: 137
    • 33b Hay AS. J. Org. Chem. 1962; 27: 3320
  • 34 Liang H.-R, Li J.-X, Wang Z.-Y, Yang K. Chin. J. Org. Chem. 2011; 31: 586
  • 35 This reaction is relatively complicated. The major side reaction is the direct Michael addition of amine 1a to methyl propiolate.
  • 36 Medoc M, Sobrio F. RSC Adv. 2014; 4: 35371