Synlett 2020; 31(02): 133-146
DOI: 10.1055/s-0037-1611500
account
© Georg Thieme Verlag Stuttgart · New York

Consecutive Ring-Expansion Reactions for the Iterative Assembly of Medium-Sized Rings and Macrocycles

Thomas C. Stephens
,
University of York, Department of Chemistry, York, YO10 5DD, UK   eMail: william.unsworth@york.ac.uk
› Institutsangaben
The authors wish to thank the Leverhulme Trust (for an Early Career Fellowship, ECF-2015-013, for W. P. U.), the University of York (T. C. S. and W. P. U.), and the EPSRC (for a contribution to the DTA studentship for T. C. S., 1792616) for funding.
Weitere Informationen

Publikationsverlauf

Received: 04. März 2019

Accepted after revision: 26. März 2019

Publikationsdatum:
12. April 2019 (online)


Published as part of the Cluster Iterative Synthesis

Abstract

Macrocycles and medium-sized rings have important applications in several scientific fields but can be challenging to make using traditional end-to-end cyclization reactions. Ring-expansion methods represent a useful alternative and offer numerous practical benefits. In this Account, we discuss the current state of the art of ring-expansion strategies that have been applied consecutively. Such methods have the power to expedite the design and synthesis of functionalized macro­cycles via the selective, iterative insertion of smaller fragments into ring-enlarged products.

1 Introduction

2 Insertion Reactions

2.1 Transamidation/Transpeptidation

2.2 Transesterification

2.3 Transthioesterification

2.4 Aminyl Radical Cascade

2.5 Iterative Synthesis of Lactones

2.6 Successive Ring Expansion of β-Ketoesters and Lactams

3 Pericyclic Reactions

3.1 Sulfur-Mediated Rearrangements

3.2 Nitrogen-Mediated Rearrangements

4 Fragmentation Reactions

5 Conclusions and Future Outlook

 
  • References


    • For large rings in medicinal chemistry, see:
    • 1a Driggers EM. Hale S. P, Lee J, Terrett NK. Nat. Rev. Drug Discov. 2008; 7: 608
    • 1b Marsault EPeterson M. L. J. Med. Chem. 2011; 54: 1961
    • 1c Ghadiri MR, Granja JR. Acc. Chem. Res. 2013; 46: 2955
    • 1d Giordanetto F, Kihlberg J. J. Med. Chem. 2014; 57: 278
    • 1e Yudin AK. Chem. Sci. 2015; 6: 30

      For large ring molecules in other applications, see:
    • 2a Ema T, Tanida D, Sakai T. J. Am. Chem. Soc. 2007; 129: 10591
    • 2b Griffiths KE, Stoddart JF. Pure Appl. Chem. 2008; 80: 485
    • 2c Evans NH, Beer PD. Chem. Soc. Rev. 2014; 43: 4658
    • 2d Xue M, Yang Y, Chi X, Yan X, Huang F. Chem. Rev. 2015; 115: 7398
    • 2e Byrne JP. Blasco S, Aletti AB, Hessman G, Gunnlaugsson T. Angew. Chem. Int. Ed. 2016; 55: 8938
    • 2f Sato K, Itoh Y, Aida T. J. Am. Chem. Soc. 2011; 133: 13767
    • 2g Iyoda M, Yamakawa J, Rahman MJ. Angew. Chem. Int. Ed. 2011; 50: 10522

      For useful background and discussion on macrocyclization strategies in general, see:
    • 3a Parenty A, Moreau X, Campagne JM. Chem. Rev. 2006; 106: 911
    • 3b Hill R, Rai V, Yudin AK. J. Am. Chem. Soc. 2010; 132: 2889
    • 3c White CJ, Yudin AK. Nat. Chem. 2011; 3: 509
    • 3d Saito F, Bode JW. Nat. Chem. 2016; 8: 1085
    • 3e Practical Medicinal Chemistry with Macrocycles. Marsault E, Peterson ML. Wiley; Hoboken, NJ: 2017
    • 4a Illuminati G, Mandolini L. Acc. Chem. Res. 1981; 14: 95
    • 4b Fastrez J. J. Phys. Chem. 1989; 93: 2635
    • 4c Collins JC, James K. Med. Chem. Commun. 2012; 3: 1489

      For pseudo-high-dilution methods (including the use of solid supported systems and phase separation), see:
    • 5a Mazur S, Jayalekshmy P. J. Am. Chem. Soc. 1979; 101: 677
    • 5b Treder AP, Hickey JL, Tremblay M.-CJ, Zaretsky S, Scully CC. G, Mancuso J, Doucet A, Yudin AK, Marsault E. Chem. Eur. J. 2015; 21: 9249
    • 5c Rosenbaum C, Waldmann H. Tetrahedron Lett. 2001; 42: 5677
    • 5d Bédard A.-C, Collins SK. J. Am. Chem. Soc. 2011; 133: 19976
    • 6a Haas K, Ponikwar W, Nöth H, Beck W. Angew. Chem. Int. Ed. 1998; 37: 1086
    • 6b Gerbeleu NV, Arion VB, Burgess JP. In Template Synthesis of Macrocyclic Compounds. Wiley-VCH; Weinheim: 1999
    • 6c Fu H, Chang H, Shen J, Yu L, Qin B, Zhang K, Zeng H. Chem. Commun. 2014; 50: 3582
  • 7 Roesner S, Saunders GJ, Wilkening I, Jayawant E, Geden JV, Kerby P, Dixon AM, Notman R, Shipman M. Chem. Sci. 2019; 10: 2465
  • 8 Gartner ZJ, Tse BN, Grubina R, Doyon JB, Snyder TM, Liu DR. Science 2004; 305: 1601

    • For an excellent account of classical ring-expansion approaches, see:
    • 9a Ring Enlargement in Organic Chemistry . Hesse M. Wiley-VCH; Weinheim: 1991

    • For a more recent review, see:
    • 9b Unsworth WP, Donald JR. Chem. Eur. J. 2017; 23: 8780

      For prominent recent examples of ring-expansion methods, see:
    • 10a Li Z.-L, Li X.-H, Wang N, Yang N.-Y, Liu X.-Y. Angew. Chem. Int. Ed. 2016; 55: 15100
    • 10b Li L, Li Z.-L, Wang F.-L, Guo Z, Cheng YF, Wang N, Dong X.-W, Fang C, Liu J, Hou C, Tan B, Liu X.-Y. Nat. Commun. 2016; 7: 13852
    • 10c Mendoza-Sanchez R, Corless VB, Nguyen QN. N, Bergeron-Brlek M, Frost J, Adachi S, Tantillo DJ, Yudin AK. Chem. Eur. J. 2017; 23: 13319
    • 10d Loya DR, Jean A, Cormier M, Fressigné C, Nejrotti S, Blanchet J, Maddaluno J, De Paolis M. Chem. Eur. J. 2018; 24: 2080
    • 10e Guney T, Wenderski TA, Boudreau MW, Tan DS. Chem. Eur. J. 2018; 24: 13150
    • 10f Osipyan A, Sapegin A, Novikov AS, Krasavin M. J. Org. Chem. 2018; 83: 9707
    • 10g Massaro NP, Stevens JC, Chatterji A, Sharma I. Org. Lett. 2018; 20: 7585
    • 10h Kumar P, Dey R, Banerjee P. Org. Lett. 2018; 20: 5163
    • 10i Reutskaya E, Osipyan A, Sapegin A, Novikov AS, Krasavin MJ. Org. Chem. 2019; 84: 1693
    • 10j Gao X, Xia M, Yuan C, Zhou L, Sun W, Li C, Wu B, Zhu D, Zhang C, Zheng B, Wang D, Guo H. ACS Catal. 2019; 9: 1645
    • 10k Loya DR, De Paolis M. Chem. Eur. J. 2019; 25: 1842
  • 11 Lehmann JW, Blair DJ, Burke MD. Nat. Rev. Chem. 2018; For perspective on the importance of iterative synthetic methods, see: 2: 115 ; and references cited therein

    • For macrocyclic polymerisaton methods, see:
    • 12a Kricheldorf HR, Lee S.-R, Schittenhelm N. Macromol. Chem. Phys. 1998; 199: 273
    • 12b Kudo H, Makino S, Kameyama A, Nishikubo T. Macromolecules 2005; 38: 5964
    • 12c Kricheldorf HR. J. Polym. Sci. A Polym. Chem. 2010; 48: 251
    • 12d Kudo H, Takeshi Y. J. Polym. Sci. A Polym. Chem. 2014; 52: 857

      For selected Hesse works, see ref. 9a and:
    • 13a Kramer U, Guggisberg A, Hesse M, Schmid H. Angew. Chem., Int. Ed. Engl. 1977; 16: 861
    • 13b Kramer U, Schmid H, Guggisberg A, Hesse M. Helv. Chim. Acta 1979; 62: 811
  • 14 Kramer U, Guggisberg A, Hesse M, Schmid H. Angew. Chem., Int. Ed. Engl. 1978; 17: 200
  • 15 Veith HJ, Hesse M, Schmid H. Helv. Chim. Acta 1970; 53: 1355
  • 16 Kimura E, Koike T, Takahashi M. J. Chem. Soc., Chem. Commun. 1985; 385
  • 17 Corey EJ, Brunelle DJ, Nicolaou KC. J. Am. Chem. Soc. 1977; 99: 7359
    • 18a Tam JP, Lu Y.-A, Yu Q. J. Am. Chem. Soc. 1999; 121: 4316
    • 18b Hemu X, Qiu Y, Tam JP. Tetrahedron 2014; 70: 7707
  • 19 Pattenden G, Schulz DJ. Tetrahedron Lett. 1993; 34: 6787
  • 20 Fouque E, Rousseau G, Seyden-Penne J. J. Org. Chem. 1990; 55: 4807
  • 21 Kitsiou C, Hindes JJ, I’Anson P, Jackson P, Wilson TC, Daly EK, Felstead HR, Hearnshaw P, Unsworth WP. Angew. Chem. Int. Ed. 2015; 54: 15794
  • 22 Baud LG, Manning MA, Arkless HL, Stephens TC, Unsworth WP. Chem. Eur. J. 2017; 23: 2225
  • 23 Stephens TC, Lodi M, Steer AM, Lin Y, Gill MT, Unsworth WP. Chem. Eur. J. 2017; 23: 13314
  • 24 Stephens TC, Lawer A, French T, Unsworth WP. Chem. Eur. J. 2018; 24: 13947
  • 25 Vedejs E, Reid JG. J. Am. Chem. Soc. 1984; 106: 4617
  • 26 Vedejs E, Hagen JP. J. Am. Chem. Soc. 1975; 97: 6878
  • 27 Schmid R, Schmid H. Helv. Chim. Acta 1977; 60: 1361
    • 28a Vedejs E, Mullins MJ, Renga JM, Singer SP. Tetrahedron Lett. 1978; 19: 519
    • 28b Vedejs E. Acc. Chem. Res. 1984; 17: 358
  • 29 Weston MH, Nakajima K, Back TG. J. Org. Chem. 2008; 73: 4630
    • 30a Lee Y.-S, Jung J.-W, Kim S.-H, Jung J.-K, Paek S.-M, Kim N.-J, Chang D.-J, Lee J, Suh Y.-G. Org. Lett. 2010; 12: 2040
    • 30b Suh Y.-G, Kim S.-A, Jung J.-K, Shin D.-Y, Min K.-H, Koo B.-A, Kim H.-S. Angew. Chem. 1999; 111: 3753
  • 31 Suh Y.-G, Lee Y.-S, Kim S.-H, Jung J.-K, Yun H, Jang J, Kim N.-J, Jung J.-W. Org. Biomol. Chem. 2012; 10: 561
  • 32 Jung J.-W, Kim S.-H, Suh Y.-G. Asian J. Org. Chem. 2017; 6: 1117
  • 33 Zhang W, Dowd P. Tetrahedron Lett. 1996; 37: 957
  • 34 Fehr C, Galindo J, Etter O, Thommen W. Angew. Chem. Int. Ed. 2002; 41: 4523
  • 35 Ikdea M, Ohno K, Takahashi M, Homma K.-I, Uchino T, Tamura Y. Heterocycles 1983; 20: 1005
  • 36 Posner GH, Hatcher MA, Maio WA. Org. Lett. 2005; 7: 4301
  • 37 Hayashi N, Fujiwara K, Murai A. Tetrahedron Lett. 1996; 37: 6173
  • 38 Fujiwara K, Murai A. Bull. Chem. Soc. Jpn. 2004; 77: 2129
    • 39a Hall JE, Matlock JV, Ward JW, Gray KV, Clayden J. Angew. Chem. Int. Ed. 2016; 55: 11153
    • 39b Hill JE, Matlock JV, Lefebvre Q, Cooper KG, Clayden J. Angew. Chem. Int. Ed. 2018; 57: 5788