Synthesis 2019; 51(16): 3060-3076
DOI: 10.1055/s-0037-1611482
paper
© Georg Thieme Verlag Stuttgart · New York

Access to Biphenyls by Palladium-Catalyzed Oxidative Coupling of Phenyl Carbamates and Phenols

Nadina Truchan
,
Christian Jandl
,
Alexander Pöthig
,
Stefan Breitenlechner
,
Department Chemie and Catalysis Research Center (CRC), Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany   Email: thorsten.bach@ch.tum.de
› Author Affiliations
This project was supported by the Deutsche Forschungsgemeinschaft (Ba 1372-19/1) and by the Graduate School, Technische Universität München.
Further Information

Publication History

Received: 14 March 2019

Accepted: 19 March 2019

Publication Date:
15 April 2019 (online)


Abstract

The oxidative cross-coupling of phenols (3 equiv) to various substituted phenyl N,N-diethylcarbamates was explored with a variety of substrates. Pd(OAc)2 was employed as the catalyst (20 mol%) and K2S2O8 as the stoichiometric oxidant in trifluoroacetic acid as the solvent (50 °C, 2 h). Carbamates without or with a substituent on the phenyl ring (Me, Ph, Cl, OMe) underwent the reaction unless the phenyl substituent was too strongly electron withdrawing (CN). Cross-coupling occurred exclusively in the ortho position relative to the carbamate group. The regioselectivity at the phenol (ortho or para to hydroxy) was mainly determined by steric factors. Yields up to 60–70% were achieved for specific carbamate/phenol combinations.

Supporting Information

Primary Data

 
  • References


    • For reviews on the synthesis of naturally occurring, axially chiral biaryls, see:
    • 1a Loxq P, Manoury E, Poli R, Deydier E, Labande A. Coord. Chem. Rev. 2016; 308: 131
    • 1b Bringmann G, Gulder T, Gulder TA. M, Breuning M. Chem. Rev. 2011; 111: 563
    • 1c Kozlowski MC, Morgana BJ, Lintona EC. Chem. Soc. Rev. 2009; 38: 3193
  • 2 Ito K, Iida T, Ichino K, Tsunezuka M, Hattori M, Namba T. Chem. Pharm. Bull. 1982; 30: 3347
  • 3 Fisch MH, Flick BH, Arditti J. Phytochemistry 1973; 12: 437
  • 4 Niwa M, Terashima K, Agil M. Heterocycles 1993; 36: 671
  • 5 Barna JC. J, Williams DH. Annu. Rev. Microbiol. 1984; 38: 339
  • 6 Aldemir H, Richarz R, Gulder TA. M. Angew. Chem. Int. Ed. 2014; 53: 8266
    • 7a Lee YE, Cao T, Torruellas C, Kozlowski MC. J. Am. Chem. Soc. 2014; 136: 6782
    • 7b More NY, Jeganmohan M. Org. Lett. 2015; 17: 3042
    • 7c Morimoto K, Sakamoto K, Ohshika T, Dohi T, Kita Y. Angew. Chem. Int. Ed. 2016; 55: 3652
    • 7d Shalit H, Libman A, Pappo D. J. Am. Chem. Soc. 2017; 139: 13404 ; and references cited therein

      For the electrochemical synthesis of 2,2′-dihydroxy- and 4,4′-dihydroxybiphenyls, see:
    • 8a Elsler B, Schollmeyer B, Dyballa KM, Franke R, Waldvogel SR. Angew. Chem. Int. Ed. 2014; 53: 5210
    • 8b Dahms B, Kohlpaintner PJ, Wiebe A, Breinbauer R, Schollmeyer D, Waldvogel SR. Chem. Eur. J. 2019; 25: 2713
    • 9a van Doorn AR, Bos M, Harkema S, van Eerden J, Verboom W, Reinhoudt DN. J. Org. Chem. 1991; 56: 2371
    • 9b Azad SM, Bennett SM. W, Brown SM, Green J, Sinn E, Topping CM, Woodward S. J. Chem. Soc., Perkin Trans. 1 1997; 687
    • 9c Chamoin S, Houldsworth S, Kruse CG, Bakker WI, Snieckus V. Tetrahedron Lett. 1998; 39: 4179
    • 9d Blakemore PR, Milicevic SD, Zakharov LN. J. Org. Chem. 2007; 72: 9368
    • 9e Morin J, Zhao Y, Snieckus V. Org. Lett. 2013; 15: 4102
    • 10a Transition Metal Catalyzed Oxidative Cross-Coupling Reactions, Lecture Notes in Chemistry 102. Lei A. Springer; Berlin: 2019
    • 10b Yang Y, Lan J, You J. Chem. Rev. 2017; 117: 8787
    • 10c McGlacken GP, Bateman LM. Chem. Soc. Rev. 2009; 38: 2447
  • 11 For a review on the directed ortho-metalation of aryl N,N-dialkylcarbamates by strong lithium bases, see: Snieckus V. Chem. Rev. 1990; 90: 879
    • 12a Bedford RB, Engelhart JU, Haddow MF, Mitchell CJ, Webster RL. Dalton Trans. 2010; 10464
    • 12b John A, Nicholas KM. J. Org. Chem. 2012; 77: 5600
    • 12c Sun X, Sun Y, Zhang C, Rao Y. Chem. Commun. 2014; 1262
  • 13 Schröder N, Wencel-Delord J, Glorius F. J. Am. Chem. Soc. 2012; 134: 8298
    • 14a Liu W, Ackermann L. Org. Lett. 2013; 15: 3484
    • 14b Yang X, Sun Y, Chen Z, Rao Y. Adv. Synth. Catal. 2014; 356: 1625
    • 15a Lee D, Kim Y, Chang S. J. Org. Chem. 2013; 78: 11102
    • 15b Hwang Y, Park Y, Chang S. Chem. Eur. J. 2017; 23: 11147
    • 16a Gong T.-J, Xiao B, Liu Z.-J, Wan J, Xu J, Luo D.-F, Fu Y, Liu L. Org. Lett. 2011; 13: 3235
    • 16b Feng C, Loh T.-P. Chem. Commun. 2011; 10458
    • 16c Li J, Kornhaaß C, Ackermann L. Chem. Commun. 2012; 11343
    • 16d Reddy MC, Jeganmohan M. Eur. J. Org. Chem. 2013; 1150
    • 16e Li B, Ma J, Liang Y, Wang N, Xu S, Song H, Wang B. Eur. J. Org. Chem. 2013; 1950
  • 17 Reddy MC, Jeganmohan M. Chem. Commun. 2013; 481
  • 18 Sharma S, Kim A, Park E, Park J, Kim M, Kwak JH, Lee SH, Jung YH, Kim IS. Adv. Synth. Catal. 2013; 355: 667
    • 19a Bedford RB, Webster RL, Mitchell CJ. Org. Biomol. Chem. 2009; 7: 4853
    • 19b Xiao B, Fu Y, Xu J, Gong T.-J, Dai J.-J, Yi J, Liu L. J. Am. Chem. Soc. 2010; 132: 468
    • 19c Zhao X, Yeung CS, Dong VM. J. Am. Chem. Soc. 2010; 132: 5837
    • 19d Bedford RB, Mitchell CJ, Webster RL. Chem. Commun. 2010; 3095
    • 19e Zhang J, Liu Q, Liu X, Zhang S, Jiang P, Wang Y, Luo S, Li Y, Wang Q. Chem. Commun. 2015; 1297
    • 19f Zhang C, Rao Y. Org. Lett. 2015; 17: 4456
    • 19g Bedford RB, Brenner PB, Durrant SJ, Gallagher T, Méndez-Gálvez C, Montgomery M. J. Org. Chem. 2016; 81: 3473
    • 19h Zhang C, Song Y, Sang Z, Zhan L, Rao Y. J. Org. Chem. 2018; 83: 2582

      Representative examples:
    • 20a Schnapperelle I, Breitenlechner S, Bach T. Chem. Eur. J. 2015; 21: 18407
    • 20b Jiao L, Bach T. Angew. Chem. Int. Ed. 2013; 52: 6080
    • 20c Müller HM, Delgado O, Bach T. Angew. Chem. Int. Ed. 2007; 46: 4771
    • 20d Bach T, Heuser S. J. Org. Chem. 2002; 67: 5789
  • 21 Bozell JJ, Hoberg JO. Tetrahedron Lett. 1998; 39: 2261
  • 22 Mann G, Incarvito C, Rheingold AL, Hartwig JF. J. Am. Chem. Soc. 1999; 121: 3224
  • 23 Littke AF, Fu GC. Angew. Chem. Int. Ed. 2002; 41: 4176 ; and references cited therein
    • 24a Yang Z, Qiu F.-C, Gao J, Li Z.-W, Guan B.-T. Org. Lett. 2015; 17: 4316
    • 24b Wang X, Leow D, Yu JQ. J. Am. Chem. Soc. 2011; 133: 13864
    • 24c Karthikeyan J, Cheng C.-H. Angew. Chem. Int. Ed. 2011; 50: 9880
    • 24d Xeung CS, Zhao X, Borduas N, Dong VM. Chem. Sci. 2010; 1: 331
    • 24e Rosewall CF, Sibbald PA, Liskin DV, Michael FE. J. Am. Chem. Soc. 2009; 131: 9488
    • 25a Powers DC, Ritter T. Nat. Chem. 2009; 1: 302
    • 25b Powers DC, Geibel MA. L, Klein JE. M. N, Ritter T. J. Am. Chem. Soc. 2009; 131: 17050
  • 26 Bess EN, DeLuca RJ, Tindall DJ, Oderinde MS, Roizen JL, Du Bois J, Sigman MS. J. Am. Chem. Soc. 2014; 136: 5783
  • 27 Pakula RJ, Srebro-Hooper M, Fry CG, Reich HJ, Autschbach J, Berry JF. Inorg. Chem. 2018; 57: 8046
  • 28 Mukherjee C, Kamila S, De A. Synlett 2003; 1474
  • 29 Xiong W, Peng C, Qi Y, Guo T, Zhang M, Jiang H. Chem. Eur. J. 2015; 21: 14314
  • 30 Yamazaki K, Kawamorita S, Ohmiya H, Sawamura M. Org. Lett. 2010; 12: 3978
  • 31 Miah MJ, Sibi MP, Chattopadhyay S, Familoni OB, Snieckus V. Eur. J. Org. Chem. 2018; 440
  • 32 Lo HJ, Lin CY, Tseng MC, Chein RJ. Angew. Chem. Int. Ed. 2014; 53: 9026
  • 33 Riggs JC, Singh KJ, Yun M, Collum DB. J. Am. Chem. Soc. 2008; 130: 13709
  • 34 Uto Y, Ueno Y, Kiyotsuka Y, Miyazawa Y, Kurata H, Ogata T, Yamada M, Deguchi T, Konishi M, Takagi T. Eur. J. Med. Chem. 2010; 45: 4788