Synlett 2019; 30(01): 114-118
DOI: 10.1055/s-0037-1611362
letter
© Georg Thieme Verlag Stuttgart · New York

DDQ-Mediated Cross-Dehydrogenative-Coupling Reaction of Secondary Amines with Dialkyl Phosphonates

Ming-Xing Cheng*
College of Pharmacy, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengzhou 450046, P. R. of China   Email: chengmx2018@hactcm.edu.cn
,
Jing-Wei Lei
,
Cai-Xia Xie
› Author Affiliations
Financial support from the Project of Science and Technology of Henan Province (No. 162102310448).
Further Information

Publication History

Received: 29 September 2018

Accepted after revision: 09 November 2018

Publication Date:
30 November 2018 (online)


Abstract

This work reports a DDQ-mediated cross-dehydrogenative-coupling reaction of secondary amines with dialkyl phosphonates under mild conditions. This reaction proceeds efficiently without involving visible light or transition-metal catalysis. This new approach provides efficient access to biologically important α-aminophosphonates.

Supporting Information

 
  • References and Notes

    • 1a Beers SA, Schwender CF, Loughney DA, Malloy E, Demarest K, Jordan J. Bioorg. Med. Chem. 1996; 4: 1693
    • 1b Aminophosphonic and Aminophosphinic Acids: Chemistry and Biological Activity. Kukhar VP, Hudson HR. Wiley; Chichester: 2000
    • 1c Vovk AI, Mischenko IM, Tanchuk VY, Kachkovskii GA, Sheiko SY, Kolodyazhnyi OI, Kukhar VP. Bioorg. Med. Chem. 2008; 18: 4620
    • 2a Hirschmann R, Smith III AB, Taylor CM, Benkovic PA, Taylor SD, Yager KM, Sprengeler PA, Benkovic SJ. Science 1994; 265: 234
    • 2b Smith AB, Taylor CM, Benkovic SJ, Hirschmann R. Tetrahedron Lett. 1994; 35: 6853
  • 3 Alonso E, Alonso E, Solís A, del Pozo C. Synlett 2000; 698
    • 4a Allen JG, Atherton FR, Hall MJ, Hassall CH, Holmes SW, Lambert RW, Nisbet LJ, Ringrose PS. Nature 1978; 272: 56
    • 4b Pratt RF. Science 1989; 246: 917
    • 4c Atherton FR, Hassall CH, Lambert RW. J. Med. Chem. 1986; 29: 29
    • 5a Maier L, Diel PJ. Phosphorus, Sulfur, Silicon Relat. Elem. 1991; 57: 57
    • 5b Maier L, Diel PJ. Phosphorus, Sulfur Silicon Relat. Elem. 1994; 90: 259
  • 6 Pudovik AN, Konovalova IV. Synthesis 1979; 81
    • 7a Cherkasov RA, Galkin VI. Russ. Chem. Rev. 1998; 67: 857
    • 7b Fields EK. J. Am. Chem. Soc. 1952; 74: 1528
    • 7c Kabachnik MI, Medved TY. Dokl. Akad. Nauk SSSR 1952; 83: 689

      For transition-metal-catalyzed oxidative phosphonylations of tertiary amines, see:
    • 8a Baslé O, Li C. Chem. Commun. 2009; 4124
    • 8b Han W, Ofial AR. Chem. Commun. 2009; 6023
    • 8c Xie J, Li H, Xue Q, Cheng Y, Zhu C. Adv. Synth. Catal. 2012; 354: 1646
    • 8d Patil MR, Dedhia NP, Kapdi AR, Kumar AV. J. Org. Chem. 2018; 83: 4477
    • 8e Alagiri K, Devadig P, Prabhu KR. Tetrahedron Lett. 2012; 53: 1456
    • 8f Han W, Mayer P, Ofial AR. Adv. Synth. Catal. 2010; 352: 1667
    • 8g Liu Y, Wang C, Xue D, Xiao M, Li C, Xiao J. Chem. Eur. J. 2017; 23: 3051
    • 8h Lin B, Shi S, Lin R, Cui Y, Fang M, Tang G, Zhao Y. J. Org. Chem. 2018; 83: 6754
    • 8i Cai J, Liu Y, Jiang Y, Yang Y. Phosphorus, Sulfur Silicon Relat. Elem. 2017; 192: 1068
    • 8j Dhineshkumar J, Lamani M, Alagiri K, Prabhu KR. Org. Lett. 2013; 15: 1092

      For visible-light catalytic oxidative phosphonylations of tertiary amines, see:
    • 9a Rueping M, Zhu S.-Q, Koenigs RM. Chem. Commun. 2011; 47: 8679
    • 9b Yoo W.-J, Kobayashi S. Green Chem. 2014; 16: 2438
    • 9c Hari DP, König B. Org. Lett. 2011; 13: 3852
    • 9d Xue Q, Xie J, Jin H, Cheng Y, Zhu C. Org. Biomol. Chem. 2013; 11: 1606
    • 9e Gandy MN, Raston CL, Stubbs KA. Chem. Commun. 2015; 51: 11041
    • 9f Wang X.-Z, Meng Q.-Y, Zhong J.-J, Gao X.-W, Lei T, Zhao L.-M, Li Z.-J, Chen B, Tung C.-H, Wu L.-Z. Chem. Commun. 2015; 51: 11256
    • 9g Niu L, Wang S, Liu J, Yi H, Liang X.-A, Liu T, Lei A. Chem. Commun. 2018; 54: 1659

      For metal-free catalytic oxidative phosphonylations of tertiary amines, see:
    • 10a Alagiri K, Devadig P, Prabhu KR. Chem. Eur. J. 2012; 18: 5160
    • 10b Dhineshkumar J, Samaddar P, Prabhu KR. ACS Omega 2017; 2: 4885
    • 10c Huo C, Xie H, Wu M, Jia X, Wang X, Chen F, Tang J. Chem. Eur. J. 2015; 21: 5723
    • 10d Wang H, Li X, Wu F, Wan B. Tetrahedron Lett. 2012; 53: 681
    • 10e Lin B, Lu G, Lin R, Cui Y, Liu Y, Tang G, Zhao Y. Synlett DOI: 10.1055/s-0037-1610306.
    • 11a Zhi H, Ung SP.-M, Liu Y, Zhao Y, Li C.-J. Adv. Synth. Catal. 2016; 358: 2553
    • 11b Cheng M.-X, Ma R.-S, Yang Q, Yang S.-D. Org. Lett. 2016; 18: 3262
    • 11c Liu Q, Yu S, Hu L, Hussain MI, Zhang X, Xiong Y. Tetrahedron 2018; 74: 7209
  • 12 α-Aminophosphonates 3; General Procedure A Schlenk tube charged with secondary amine 1 (0.2 mmol) and DDQ (0.24 mmol, 1.2 equiv) was purged three times with argon. Anhyd toluene (2.0 mL) and phosphite 2 (0.36 mmol, 1.8 equiv) were added, and the mixture was stirred at 80 °C under Ar for 48 h. When the reaction was complete (TLC), the mixture was washed with sat. aq Na2CO3, concentrated, and purified by column chromatography (silica gel).
  • 13 Diethyl {(2E)-1-[(4-Bromophenyl)amino]-3-phenylprop-2-en-1-yl}phosphonate (3a) Viscous oil; yield: 78 mg (92%). 1H NMR (400 MHz, CDCl3): δ = 7.46–7.16 (m, 7 H), 6.67 (dd, J = 15.9, 4.8 Hz, 1 H), 6.62–6.50 (m, 2 H), 6.23 (dt, J = 16.0, 5.4 Hz, 1 H), 4.41 (dd, J = 19.4, 6.6 Hz, 2 H), 4.29–4.06 (m, 4 H), 1.30 (td, J = 7.1, 4.6 Hz, 6 H). 13C NMR (101 MHz, CDCl3): δ = 145.48 (d, J = 12.5 Hz), 136.00 (d, J = 3.2 Hz), 133.11 (d, J = 12.3 Hz), 131.93, 128.53, 127.93, 126.51 (d, J = 1.8 Hz), 122.83 (d, J = 4.6 Hz), 115.36 (d, J = 8.5 Hz), 110.15, 63.44 (d, J = 7.1 Hz), 63.08 (d, J = 7.2 Hz), 54.71, 53.18, 16.43 (t, J = 5.2 Hz). 31P NMR (162 MHz, CDCl3): δ = 21.92. MS (ESI): m/z = 424.1 [M + H]+.