Synlett 2019; 30(01): 54-58
DOI: 10.1055/s-0037-1611169
letter
© Georg Thieme Verlag Stuttgart · New York

Synthesis and Optoelectronic Properties of Iptycene–Naphthazarin Dyes

Cagatay Dengiz
a   Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
b   Department of Chemistry, Middle East Technical University, 06800, Ankara, Turkey   Email: tswager@mit.edu
,
You-Chi Mason Wu
a   Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
,
a   Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
› Author Affiliations
We are grateful to the Air Force Office of Scientific Research (# FA9550-18-1-0341) for support of this research.
Further Information

Publication History

Received: 13 September 2018

Accepted after revision: 17 October 2018

Publication Date:
04 December 2018 (online)


Abstract

We report the synthesis and characterization of iptycene–naphthazarin dyes by using a sequential Diels–Alder approach. The tautomerization of naphthazarin was used as the key step in the synthesis, with structures confirmed by single-crystal X-ray and NMR analysis. The systematic trends in electronic properties were investigated by UV/Vis spectroscopy. BF2 complexes of the dyes were prepared by reaction with BF3·OEt2 in CH2Cl2.

Supporting Information

 
  • References and Notes

    • 1a Odom SA, Parkin SR, Anthony JE. Org. Lett. 2003; 5: 4245
    • 1b Wolak MA, Jang B.-B, Palilis LC, Kafafi ZH. J. Phys. Chem. B 2004; 108: 5492
    • 1c Baryshnikov GV, Gawrys P, Ivaniuk K, Witulski B, Whitby RJ, Al-Muhammad A, Minaev B, Cherpak V, Stakhira P, Volyniuk D, Wiosna-Salyga G, Luszczynska B, Lazauskas A, Tamulevicius S, Grazulevicius JV. J. Mater. Chem. C 2016; 4: 5795
    • 2a Kelley TW, Baude PF, Gerlach C, Ender DE, Muyres D, Haase MA, Vogel DE, Theiss SD. Chem. Mater. 2004; 16: 4413
    • 2b Anthony JE. Chem. Rev. 2006; 106: 5028
    • 2c Anthony JE. Angew. Chem. Int. Ed. 2008; 47: 452
    • 3a Rand BP, Genoe J, Heremans P, Poortmans J. Prog. Photovoltaics 2007; 15: 659
    • 3b Lim Y.-F, Shu Y, Parkin SR, Anthony JE, Malliaras GG. J. Mater. Chem. 2009; 19: 3049
    • 3c Shu Y, Lim Y.-F, Li Z, Purushothaman B, Hallani R, Kim JE, Parkin SR, Malliaras GG, Anthony JE. Chem. Sci. 2011; 2: 363
  • 4 Mondal R, Adhikari RM, Shah BK, Neckers DC. Org. Lett. 2007; 9: 2505
    • 5a Helson HE, Vollhardt PC, Yang Z.-Y. Angew. Chem. Int. Ed. Engl. 1985; 24: 114
    • 5b Schleifenbaum A, Feeder N, Vollhardt KP. C. Tetrahedron Lett. 2001; 42: 7329
    • 5c Parkhurst RR, Swager TM. J. Am. Chem. Soc. 2012; 134: 15351
    • 5d Parkhurst RR, Swager TM. Top. Curr. Chem. 2014; 350: 141
    • 5e Biegger P, Schaffroth M, Patze C, Tverskoy O, Rominger F, Bunz UH. F. Chem. Eur. J. 2015; 21: 7048
    • 5f Luppino S, Swager T. Synlett 2017; 28: 323
    • 5g Dengiz C, Luppino SP, Gutierrez GD, Swager TM. J. Org. Chem. 2017; 82: 7470
    • 5h Jin Z, Teo YC, Zulaybar NG, Smith MD, Xia Y. J. Am. Chem. Soc. 2017; 139: 1806
    • 5i Jin Z, Teo YC, Teat SJ, Xia Y. J. Am. Chem. Soc. 2017; 139: 15933
    • 7a Fariña F, Vega JC. Tetrahedron Lett. 1972; 1655
    • 7b Echavarren A, Prados P, Farina F. Tetrahedron 1984; 40: 4561
    • 8a Kelly TR, Gillard JW, Goerner RN, Lyding JM. J. Am. Chem. Soc. 1977; 99: 5513
    • 8b de Bie JF. M, Peperzak RM, Daenen MJ, Scheeren HW. Tetrahedron 1993; 49: 6463
  • 9 Yao M, Umetani S, Ando H, Kiyobayashi T, Takeichi N, Kondo R, Takeshita HT. J. Mater. Sci. 2017; 52: 12401
  • 10 Hart H, Bashir-Hashemi A, Luo J, Meador MA. Tetrahedron 1986; 42: 1641
    • 11a Sauer J, Sustmann R. Angew. Chem. Int. Ed. Engl. 1980; 19: 779
    • 11b Nicolaou KC, Snyder SA, Montagnon T, Vassilikogiannakis G. Angew. Chem. Int. Ed. 2002; 41: 1668
  • 12 Ono K, Yamaguchi H, Taga K, Saito K, Nishida JL, Yamashita Y. Org. Lett. 2009; 11: 149
  • 13 Ono K, Hashizume J, Yamaguchi H, Tomura M, Nishida JI, Yamashita Y. Org. Lett. 2009; 11: 4326
  • 14 Only the general procedures for the synthesis of the target dyes 57 are reported here; all other details and protocols can be found in the Supporting Information. Synthesis of Iptycene–Naphthazarin Dyes 57; General Procedure: Dienophiles 13 (1 equiv) and diene 4 (1 equiv) were added to a flame-dried Schlenk flask with stirrer bar, and were dissolved in the minimal amount of anhydrous toluene (1–2 mL). The headspace was purged with argon, then heated to reflux overnight (111 °C). The solvent was evaporated under reduced pressure, and the crude material was redissolved in tetrahydrofuran (20 mL). After addition of KOtBu (18 equiv) and stirring under ambient conditions for 1–3 h, the blue reaction mixture was poured over NH4Cl (aq) and extracted with EtOAc. The organic layer was dried with MgSO4, filtered and evaporated. Flash chromatography (SiO2; hexanes/CH2Cl2, 1:1 or 1:2) gave 57 as orange solids in 30–53% yield. Compound 5: Rf = 0.35 (SiO2; hexanes/CH2Cl2, 1:1); m.p. >300 °C; 1H NMR (400 MHz, CD2Cl2, 298 K): δ = 5.68 (s, 2 H), 6.10 (s, 2 H), 7.01–7.09 (m, 8 H), 7.41–7.51 (m, 8 H), 8.26 (s, 2 H), 13.18 (s, 2 H); 13C NMR (100 MHz, CD2Cl2, 298 K): δ = 187.5, 153.6, 152.6, 146.6, 144.5, 144.0, 132.1, 126.5, 126.2, 124.73, 124.65, 122.0, 112.0, 54.5, 48.0; UV/Vis (CH2Cl2): λ max (ε) = 496 (9570), 287 (50230), 259 nm (21130 M–1 cm–1); HRMS (ESI): m/z [M]+ calcd for C42H24O4 +: 592.1675; found: 592.1676. Compound 6: Rf = 0.59 (SiO2; hexanes/CH2Cl2, 1:1); m.p. >300 °C; 1H NMR (400 MHz, CD2Cl2, 298 K): δ = 1.20 (s, 12 H), 1.23 (s, 12 H), 1.61 (br. s, 8 H), 5.68 (s, 2 H), 5.94 (s, 2 H), 6.95–7.10 (m, 4 H), 7.40 (s, 4 H), 7.42–7.51 (m, 4 H), 8.27 (s, 2 H), 13.21 (s, 2 H); 13C NMR (100 MHz, CD2Cl2, 298 K): δ = 187.4, 153.5, 152.5, 147.0, 144.0, 142.7, 141.5, 132.2, 126.4, 124.6, 122.7, 122.0, 111.9, 54.5, 47.4, 35.6, 34.8, 32.2, 32.1; UV/Vis (CH2Cl2): λ max (ε) = 497 (10130), 287 (40040), 257 nm (18420 M–1 cm–1); HRMS (ESI): m/z [M]+ calcd for C58H52O4 +: 812.3866; found: 812.3887. Compound 7: Rf = 0.41 (SiO2; hexanes/CH2Cl2, 1:1); m.p. 288–289 °C; 1H NMR (400 MHz, CD2Cl2, 298 K): δ = 2.14 (s, 12 H), 5.68 (s, 2 H), 5.92 (s, 2 H), 7.05 (br. dd, J = 5.5, 3.1 Hz, 4 H), 7.21 (s, 4 H), 7.45 (br. dd, J = 5.5, 3.1 Hz, 4 H), 8.26 (s, 2 H), 13.17 (s, 2 H); 13C NMR (100 MHz, CD2Cl2, 298 K): δ = 187.4, 153.4, 152.5, 147.3, 144.1, 142.3, 134.1, 132.2, 126.4, 125.9, 124.6, 122.0, 111.9, 54.5, 47.1, 19.7; UV/Vis (CH2Cl2): λ max (ε) = 497 (9425), 288 (38750), 257 nm (17170 M–1 cm–1); HRMS (ESI): m/z [M + H]+ calcd for C46H33O4 +: 649.2379; found: 649.2401.