Synlett 2019; 30(05): 542-551
DOI: 10.1055/s-0037-1611020
account
© Georg Thieme Verlag Stuttgart · New York

Transition-Metal-Catalyzed Cross-Coupling with Non-Diazo Carbene Precursors

Kang Wang
a   Beijing National Laboratory of Molecular Sciences (BNLMS) and Key Laboratory of Bioorganic Chemistry and Molecular ­Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, P. R. of China
b   Research Institute of Aerospace Special Materials and Processing Technology, Beijing 100074, P. R. of China
,
a   Beijing National Laboratory of Molecular Sciences (BNLMS) and Key Laboratory of Bioorganic Chemistry and Molecular ­Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, P. R. of China
c   The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. of China   Email: wangjb@pku.edu.cn
› Author Affiliations
The project has been supported by the National Basic Research ­Program of China (973 Program, No. 2015CB856600) and the Natural Science Foundation of China (21332002).
Further Information

Publication History

Received: 16 August 2018

Accepted after revision: 17 September 2018

Publication Date:
16 October 2018 (online)


Abstract

Transition-metal-catalyzed cross-coupling reactions through metal carbene migratory insertion have emerged as powerful methodology for carbon–carbon bond constructions. Typically, diazo compounds (or in situ generated diazo compounds from N-tosylhydrazones) have been employed as the metal carbene precursors for this type of cross-coupling reactions. Recently, cross-coupling reactions employing non-diazo carbene precursors, such as conjugated ene-yne-ketones, allenyl ketones, alkynes, cyclopropenes, and Cr(0) Fischer carbenes, have been developed. This account will summarize our efforts in the development of transition-metal-catalyzed cross-coupling reactions with these non-diazo carbene precursors.

1 Introduction

2 Cross-Coupling with Ene-yne-ketones, Allenyl Ketones, and Alkynes

3 Cross-Coupling Involving Ring-Opening of Cyclopropenes

4 Palladium-Catalyzed Cross-Coupling with Chromium(0) Fischer Carbenes

5 Conclusion

 
  • References


    • For selected reviews see:
    • 1a Doyle MP. McKervey MA. Ye T. Modern Catalytic Methods for Organic Synthesis with Diazo Compounds: From Cyclopropanes to Ylides. Wiley; New York: 1998
    • 1b Doyle MP. Forbes DC. Chem. Rev. 1998; 98: 911
    • 1c Trnka TM. Grubbs RH. Acc. Chem. Res. 2001; 34: 18
    • 1d de Frémont P. Marion N. Nolan SP. Coord. Chem. Rev. 2009; 253: 862
    • 1e Vougioukalakis GC. Grubbs RH. Chem. Rev. 2010; 110: 1746
    • 1f Davies HM. L. Denton JR. Chem. Soc. Rev. 2009; 38: 3061
    • 1g Che C.-M. Lo VK.-Y. Zhou C.-Y. Huang J.-S. Chem. Soc. Rev. 2011; 40: 1950
    • 1h Guo X. Hu W. Acc. Chem. Res. 2013; 46: 2427
    • 1i Zhu SF. Zhou Q.-L. Acc. Chem. Res. 2012; 45: 1365
    • 3a Xia Y. Wang J. Chem. Soc. Rev. 2017; 46: 2306
    • 3b Di Q. Mo F. Zhang Y. Wang J. Adv. Organomet. Chem. 2017; 67: 151
  • 4 Jia M. Ma S. Angew. Chem. Int. Ed. 2016; 55: 9134
    • 6a Miki K. Nishino F. Ohe K. Uemura S. J. Am. Chem. Soc. 2002; 124: 5260
    • 6b Miki K. Washitake Y. Ohe K. Uemura S. Angew. Chem. Int. Ed. 2004; 43: 1857
    • 6c Kato Y. Miki K. Nishino F. Ohe K. Uemura S. Org. Lett. 2003; 5: 2619
    • 6d Vicente R. González J. Riesgo L. González J. López LA. Angew. Chem. Int. Ed. 2012; 51: 8063
    • 6e González J. González J. Pérez-Calleja C. López LA. Vicente R. Angew. Chem. Int. Ed. 2013; 52: 5853
    • 6f Cao H. Zhan H. Cen J. Lin J. Lin Y. Zhu Q. Fu M. Jiang H. Org. Lett. 2013; 15: 1080
    • 6g Zhan H. Lin X. Qiu Y. Du Z. Li P. Li Y. Cao H. Eur. J. Org. Chem. 2013; 2284
    • 6h Liu P. Sun J. Org. Lett. 2017; 19: 3482
    • 6i Zheng Y. Bao M. Yao R. Qiu L. Xu X. Chem. Commun. 2018; 54: 350
  • 7 Xia Y. Qu S. Xiao Q. Wang Z.-X. Qu P. Chen Li. Liu Z. Tian L. Huang Z. Zhang Y. Wang J. J. Am. Chem. Soc. 2013; 135: 13502
  • 8 Xia Y. Ge R. Chen L. Liu Z. Xiao Q. Zhang Y. Wang J. J. Org. Chem. 2015; 80: 7856
  • 9 Xia Y. Liu Z. Ge R. Xiao Q. Zhang Y. Wang J. Chem. Commun. 2015; 51: 11233
  • 10 Hu F. Xia Y. Ma C. Zhang Y. Wang J. Org. Lett. 2014; 16: 4082
  • 11 Hu F. Xia Y. Ma C. Zhang Y. Wang J. J. Org. Chem. 2016; 81: 3275
  • 12 Xia Y. Chen L. Qu P. Ji G. Feng S. Xiao Q. Zhang Y. Wang J. J. Org. Chem. 2016; 81: 10484
    • 14a He W. Li C. Zhang L. J. Am. Chem. Soc. 2011; 133: 8482
    • 14b Zhang L. Acc. Chem. Res. 2014; 47: 877
    • 14c Ji K. Zheng Z. Wang Z. Zhang L. Angew. Chem. Int. Ed. 2015; 54: 1245
    • 14d Homs A. Muratore ME. Echavarren AM. Org. Lett. 2015; 17: 461
    • 14e Wang Y. Zheng Z. Zhang L. J. Am. Chem. Soc. 2015; 137: 5316
    • 14f Chen H. Zhang L. Angew. Chem. Int. Ed. 2015; 54: 11775
    • 14g Wang L. Xie X. Liu Y. Angew. Chem. Int. Ed. 2013; 52: 13302
    • 14h Li J. Ji K. Zheng R. Nelson J. Zhang L. Chem. Commun. 2014; 50: 4130
  • 15 Gao Y. Wu G. Zhou Q. Wang J. Angew. Chem. Int. Ed. 2018; 57: 2716
    • 16a Xia Y. Xia Y. Ge R. Liu Z. Xiao Q. Zhang Y. Wang J. Angew. Chem. Int. Ed. 2014; 53: 3917
    • 16b Ma S. Zhang J. Lu L. Chem. Eur. J. 2003; 9: 2447
    • 16c Ma S. Zhang J. Chem. Commun. 2000; 117
  • 18 Zhang H. Wang K. Wang B. Yi H. Hu F. Li C. Zhang Y. Wang J. Angew. Chem. Int. Ed. 2014; 53: 13234
  • 20 Zhang H. Wang B. Wang K. Xie G. Li C. Zhang Y. Wang J. Chem. Commun. 2014; 50: 8050
    • 21a Barluenga J. Aguilar E. Adv. Organomet. Chem. 2017; 67: 1
    • 21b Dötz KH. Stendel JJr. Chem. Rev. 2009; 109: 3227
    • 21c Barluenga J. Santamaría J. Tomás M. Chem. Rev. 2004; 104: 2259

      For reviews see:
    • 22a Song W. Blaszczyk SA. Liu J. Wang S. Tang W. Org. Biomol. Chem. 2017; 15: 7490
    • 22b Dötz KH. Tomuschat P. Chem. Soc. Rev. 1999; 28: 187
    • 22c de Meijere A. Schirmer H. Duetsch M. Angew. Chem. Int. Ed. 2000; 39: 3964

    • Also see:
    • 22d Dötz KH. Angew. Chem., Int. Ed. Engl. 1975; 14: 644
    • 22e Dötz KH. Angew. Chem., Int. Ed. Engl. 1984; 23: 587

      For reviews see:
    • 23a Gómez-Gallego M. Mancheño MJ. Sierra MA. Acc. Chem. Res. 2005; 38: 44
    • 23b Wu Y.-T. Kurahashi T. de Meijere A. J. Organomet. Chem. 2005; 690: 5900

      For selected examples of Pd catalysis see:
    • 24a Sierra MA. Mancheño MJ. Sáez E. del Amo JC. J. Am. Chem. Soc. 1998; 120: 6812
    • 24b Sierra MA. del Amo JC. Mancheño MJ. Gómez-Gallego M. J. Am. Chem. Soc. 2001; 123: 851

    • For Cu catalysis see:
    • 24c Göttker-Schnetmann I. Aumann R. Bergander K. Organometallics 2001; 20: 3574
    • 24d Barluenga J. López LA. Löber O. Tomás M. García-Granda S. Alvarez-Rúa C. Borge J. Angew. Chem. Int. Ed. 2001; 40: 3392

    • For Ni catalysis, see:
    • 24e Barluenga J. Barrio P. López LA. Tomás M. García-Granda S. Alvarez-Rúa C. Angew. Chem. Int. Ed. 2003; 42: 3008
    • 24f Barluenga J. Vicente R. Barrio P. López LA. Tomás M. J. Am. Chem. Soc. 2004; 126: 5974

    • For Rh catalysis, see:
    • 24g Aumann R. Göttker-Schnetmann I. Fröhlich R. Meyer O. Eur. J. Org. Chem. 1999; 2545
    • 24h Barluenga J. Vicente R. López LA. Rubio E. Tomás M. Alvarez-Rúa C. J. Am. Chem. Soc. 2004; 126: 470
    • 24i Barluenga J. Vicente R. Barrio P. López LA. Tomás M. J. Am. Chem. Soc. 2004; 126: 5974

    • For Au-catalysis, see:
    • 24j Seidel G. Gabor B. Goddard R. Heggen B. Thiel W. Fürstner A. Angew. Chem. Int. Ed. 2014; 53: 879
    • 24k Seidel G. Fürstner A. Angew. Chem. Int. Ed. 2014; 53: 4807
  • 25 Wang K. Ping Y. Chang T. Zhang Y. Wang J. Angew. Chem. Int. Ed. 2017; 56: 13140
  • 26 Wang K. Lu Y. Hu F. Yang J. Zhang Y. Wang Z.-X. Wang J. Organometallics 2018; 37: 1
  • 27 Wang K. Wu F. Zhang Y. Wang J. Org. Lett. 2017; 19: 2861
    • 28a Wulff WD. Kaesler RW. Peterson GA. Tang PC. J. Am. Chem. Soc. 1985; 107: 1060
    • 28b Herndon JW. Wang H. J. Org. Chem. 1998; 63: 4562
    • 28c Wu C. Berbasov DO. Wulff WD. J. Org. Chem. 2010; 75: 4441