Synlett 2018; 29(18): 2385-2389
DOI: 10.1055/s-0037-1610995
letter
© Georg Thieme Verlag Stuttgart · New York

Iridium-Catalyzed Direct Cyclization of Aromatic Amines with Diols

Maki Minakawa*
a   Department of Applied Chemistry, Chemical Engineering and Biochemical Engineering, Yamagata University, 4-3-16, Jonan, Yonezawa, Yamagata 992-8510, Japan   Email: minakawa@yz.yamagata-u.ac.jp
,
Kouichi Watanabe
b   Department of Chemistry, College of Humanities & Science, Nihon University, 3-25-40, Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan
,
Satoru Toyoda
a   Department of Applied Chemistry, Chemical Engineering and Biochemical Engineering, Yamagata University, 4-3-16, Jonan, Yonezawa, Yamagata 992-8510, Japan   Email: minakawa@yz.yamagata-u.ac.jp
,
Yasuhiro Uozumi
c   Institute for Molecular Science, 5-1, Higashiyama, Myodaiji, Okazaki, 444-8787, Japan
› Author Affiliations
This research was supported by Joint Research by Institute for Molecular Science (IMS) (IMS program No, 605), and Intra-university Joint Research Grant by Yamagata University Gender Equality Office. This work was partially supported by the Asahi Glass Foundation.
Further Information

Publication History

Received: 27 August 2018

Accepted after revision: 30 August 2018

Publication Date:
02 October 2018 (online)


Abstract

We developed an environmentally friendly iridium-catalyzed direct cyclization of aromatic amines with diols that generates the corresponding N-heterocyclic compounds with water as the sole by-product. Thus, under conditions of 165 °C for 18 hours, the direct cyclization of N-methylanilines with 1,3-propanediol by using an IrCl3 catalyst with rac-BINAP as a ligand in mesitylene afforded the corresponding tetrahydroquinoline derivatives with yields ranging from 73 to 83%. ­Under similar reaction conditions, direct cyclization of anilines with 1,3-propanediol produced the corresponding tetrahydrobenzoquinolizine derivatives with yields ranging from 26 to 76%.

Supporting Information

 
  • References and Notes

    • 1a Corma A. Navas J. Sabater MJ. Chem. Rev. 2018; 118: 1410
    • 1b Wang D. Astruc D. Chem. Rev. 2015; 115: 6621
    • 1c Bähn S. Imm S. Neubert L. Zhang M. Neumann H. Beller M. ChemCatChem 2011; 3: 1853
    • 1d Yang Q. Wang Q. Yu Z. Chem. Soc. Rev. 2015; 44: 2305
    • 1e Saracoglu N. Top. Heterocycl. Chem. 2007; 11: 145
    • 1f Jakopin Z. Dolenc MS. Curr. Med. Chem. 2010; 17: 651
    • 1g Xuan J. Lu L.-Q. Chen J.-R. Xiao W.-J. Eur. J. Org. Chem. 2013; 6755
    • 1h Chen J.-R. Hu X.-Q. Lu L.-Q. Xiao W.-J. Chem. Rev. 2015; 115: 5301
    • 1i Xuan J. Studer A. Chem. Soc. Rev. 2017; 46: 4329
    • 1j Alonso F. Beletskaya IP. Yus M. Chem. Rev. 2004; 104: 3079
    • 1k McReynolds MD. Dougherty JM. Hanson PR. Chem. Rev. 2004; 104: 2239
    • 1l Deiters A. Martin SF. Chem. Rev. 2004; 104: 2199
    • 2a Kitayama H. Abe E. Kaneko K. J. Heterocyclic Chem. 1982; 19: 925
    • 2b Ranu BC. Eur. J. Org. Chem. 2000; 2347
    • 2c Cacchi S. Fabrizi G. Chem. Rev. 2005; 105: 2873
    • 2d Krüger K. Tillack A. Beller M. Adv. Synth. Catal. 2008; 350: 2153
    • 2e Inman M. Moody CJ. Chem. Sci. 2013; 4: 29
    • 2f Du Y.-L. Hu Y. Zhu Y.-F. Han Z.-Y. Gong L.-Z. J. Org. Chem. 2015; 80: 4754
    • 2g Cheng X. Cao X. Xuan J. Xiao W.-J. Org. Lett. 2018; 20: 52
    • 2h Reddy CR. Mallesh K. Org. Lett. 2018; 20: 150
    • 3a Yeung CS. Dong VM. Chem. Rev. 2011; 111: 1215
    • 3b Girard SA. Knauber T. Li C.-J. Angew. Chem. Int. Ed. 2014; 53: 74
    • 3c Ye B. Cramer N. Acc. Chem. Res. 2015; 48: 1308
    • 3d Cho CS. Kim DT. Kim T.-J. Shim SC. Bull. Korean Chem. Soc. 2003; 24: 1026
    • 3e Lee DY. Cho CS. Kim JH. Youn YZ. Shim SC. Song H. Bull. Korean Chem. Soc. 1996; 17: 1132
    • 3f Shan SP. Xiaoke X. Gnanaprakasam B. Dang TT. Ramalingam B. Huynh HV. Seayad AM. RSC Adv. 2015; 5: 4434
    • 3g Xia J. Huang Z. Yang X. Wang F. Li X. Org. Lett. 2018; 20: 740
    • 3h Shi Z. Boultadakis-Arapinis M. Glorius F. Chem. Commun. 2013; 49: 6489
    • 3i Yu S. Li X. Org. Lett. 2014; 16: 1200
    • 4a Tsuji Y. Huh K.-T. Watanabe Y. Tetrahedron Lett. 1986; 27: 377
    • 4b Tsuji Y. Huh K.-T. Watanabe Y. J. Org. Chem. 1987; 52: 1673
    • 4c Amamoto H. Obora Y. Ishii Y. J. Org. Chem. 2009; 74: 628
    • 4d Lee H. Yi CS. Organometallics 2016; 35: 1973
    • 4e Labed A. Jiang F. Labed I. Lator A. Peters M. Achard M. Kabouche A. Kabouche Z. Sharma GV. M. Brujneu C. ChemCatChem 2015; 7: 1090
    • 4f Pan S. Shibata T. ACS Catal. 2013; 3: 704
  • 5 Minakawa M. Okubo M. Kawatsura M. Bull. Chem. Soc. Jpn. 2015; 88: 1680
  • 6 Minakawa M. Okubo M. Kawatsura M. Tetrahedron Lett. 2016; 57: 4187
    • 7a Abura T. Ogo S. Watanabe Y. Fukuzumi S. J. Am. Chem. Soc. 2003; 125: 4149
    • 7b Ogo S. Uehara K. Abura T. Fukuzumi S. J. Am. Chem. Soc. 2004; 126: 3020
  • 8 In entry 11, 2a was not detected in 1H NMR analysis (conversion: 100%). The main product seems to be N,N'-diphenyl-1,3-propanediamine (45% NMR yield).
  • 9 In entry 2, N-methyl-N-propylaniline was also detected.4e The ratio of 3a to N-methyl-N-propylaniline was 18:1 (1H NMR analysis). A similar ratio of 3a to N-methyl-N-propylaniline was observed in entries 3 and 4.
    • 10a The reaction of N-ethylaniline (1g) with 1,3-propanediol (2a) gave 1-ethyl-1,2,3,4-tetrahydroquinoline (3g) in 40% yield. The reaction of N-propylamine (1h) with 1,3 -propanediol (2a) gave 1-isopropyl-1,2,3,4-tetrahydroquinoline (3h) in <3% yield. Both reactions included the corresponding diamine compound (like 7) (3g/7g = 1:1 and 3h/7h = 1:39). Compound 3g:10a 1H NMR (CDCl3, 400 MHz): δ = 1.13 (t, J = 7.0 Hz, 3 H), 1.92–1.98 (m, 2 H), 2.74 (t, J = 6.2 Hz, 2 H), 3.26 (t, J = 5.8 Hz, 2 H), 3.34 (q, J = 7.1 Hz, 2 H), 6.54 (tt, J = 0.93 Hz, 7.3 Hz, 1 H), 6.59 (d, J = 8.4 Hz, 1 H), 6.93 (dd, J = 1.2 Hz, 7.2 Hz, 1 H), 7.02–7.06 (m, 1 H) ppm. HRMS: m/z calcd for C11H15N [M]+: 161.1204; found: 161.1197. Compound 3h:10a 1H NMR (CDCl3, 600 MHz): δ = 1.17 (d, J = 6.6 Hz, 6 H), 1.88–1.92 (m, 2 H), 2.73 (t, J = 6.6 Hz, 2 H), 3.14 (t, J = 6.0 Hz, 2 H), 4.10 (sept, J = 6.7 Hz, 1 H), 6.52–6.56 (m, 1 H), 6.68 (d, J = 7.8 Hz, 1 H), 6.94 (d, J = 6.6 Hz, 1 H), 7.03–7.06 (m, 1 H) ppm. HRMS: m/z calcd for C12H17N [M]+: 175.1361; found: 175.1359.
    • 10b Abarca B. Adam R. Ballesteros R. Org. Biomol. Chem. 2012; 10: 1826
    • 11a Zhang M. Xie F. Wang X.-T. Yan F. Wang T. Chen M. Ding Y. RSC Adv. 2013; 3: 6022
    • 11b Kasuga T. Takamura K. Hara R. Takagi U. Jpn. Kokai Tokkyo Koho 1996; 08319273
    • 11c Joule JA. Sci. Synth. 2001; 10: 361
    • 11d Nisida T. Tokuda Y. Tsuchiya M. J. Chem. Soc., Perkin Trans. 2 1995; 4: 823
  • 12 General Procedure and Characterization Data: Ir-catalyzed direct cyclization of 3-fluoro-aniline (4e) with 1,3-propanediol (2a) (Table 3, entry 5): To a vial was added 3-fluoroaniline (111.1 mg, 1.0 mmol), IrCl3·3H3O (11.5 mg, 5.0 mol%), and rac-BINAP (30.4 mg, 7.5 mol%) under air. Furthermore, mesitylene (0.5 mL) and then 1,3-propanediol (98.9 mg, 1.3 mmol) were added and the reaction mixture was stirred at 165 °C for 18 h. After the reaction, the resulting mixture was diluted with hexane. Then, the reaction mixture was filtrated with a filter paper and concentrated in vacuo. The resulting residue was purified by flash column chromatography on SiO2 ( t BuOMe/hexane 1:15) to yield 2,3,6,7-tetrahydro-8-fluoro-1H,5H-benzo[ij]quinolizine (5e) in 59% yield (73.2 mg) as a pale yellow solution. 1H NMR (500 MHz, CDCl3): δ = 1.92−1.98 (m, 4 H), 2.68−2.72 (m, 4 H), 3.09−3.12 (m, 4 H), 6.24 (t, J HF = 8.8 Hz, 1 H), 6.70 (t, J HF = 7.5 Hz, 1 H) ppm. 13C NMR (125 MHz, CDCl3): δ = 20.3 (d, 3 J CF = 5.9 Hz), 21.3, 22.2, 27.3, 49.6, 50.0, 102.0 (d, 2 J CF = 22.9 Hz), 108.5 (d, 2 J CF = 21.7 Hz), 116.8 (d, 4 J CF = 2.4 Hz), 126.8 (d, 3 J CF = 10.8 Hz), 144.1, (d, 3 J CF = 8.4 Hz), 159.7 (d, 1 J CF = 241.3 Hz) ppm. 19F-NMR (470 MHz, CDCl3): δ = −124.2 ppm. HRMS: m/z calcd for C12H14FN [M]+: 191.1110; found: 191.1110.
  • 13 the reaction 4a with 2dg, the desired products 3adag were not detected (Scheme 7) by 1H NMR analysis
  • 14 The reaction of 4a with 1,4-butanediol (2c) resulted in a double N-alkylation to afford 1-phenylpyrrolidine in 76% yield (see Supporting Information).
  • 15 Compound 5g was unstable and gradually decomposed under chromatographic conditions.
  • 16 Under similar reaction conditions with 4 Å molecular sieves, the reaction of aniline (4a) with 1,3-propanediol (2a) gave quinoline in 7% yield and no tetrahydrobenzoquinolizine 5a.
    • 17a García-González MC. Hernández-Vázquez E. Vengochea-Gómez FA. Miranda LD. Tetrahedron Lett. 2018; 59: 848
    • 17b Ouyang K. Hao W. Zhang W.-X. Xi Z. Chem. Rev. 2015; 115: 12045
    • 17c Ikeda Y. Takano K. Kodama S. Ishii Y. Organometallics 2014; 33: 3998 , and references therein
  • 18 For example: LD 490 (Coumarin 6H) [CAS: 58336-35-9].