Synthesis 2019; 51(11): 2323-2330
DOI: 10.1055/s-0037-1610869
paper
© Georg Thieme Verlag Stuttgart · New York

Copper-Catalyzed Three-Component Coupling Reaction of Aryl Iodides, a Disilathiane, and Alkyl Benzoates Leading to a One-Pot Synthesis of Alkyl Aryl Sulfides

Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science (RIKADAI), Noda, Chiba 278-8510, Japan   Email: sakachem@rs.noda.tus.ac.jp
,
Hiromu Maeda
,
› Author Affiliations
Further Information

Publication History

Received: 09 January 2019

Accepted after revision: 12 February 2019

Publication Date:
18 March 2019 (online)


Abstract

A copper-catalyzed three-component coupling reaction of aryl iodides, hexamethyldisilathiane and alkyl benzoates leading to alkyl aryl sulfides has been demonstrated. A disilathiane acted as both a sulfur source and a promoter of the sulfidation, and the alkyl moiety of the alkyl benzoate was effectively introduced on one side of the sulfide. Moreover, we found that the protocol can be expanded to the preparation of ethyl phenyl selenide with diphenyl diselenide.

Supporting Information

 
  • References


    • For examples, see:
    • 1a Liu H, Jiang X. Chem. Asian J. 2013; 8: 2546
    • 1b Nguyen TB. Adv. Synth. Catal. 2017; 359: 1066
    • 1c Larik FA, Saeed A, Muqadar U, El-Seedi H, Faisal M, Channar PA, Mehfooz H. Phosphorus, Sulfur Silicon Relat. Elem. 2017; 192: 490
  • 2 Ilardi EA, Vitaku E, Njardarson JT. J. Med. Chem. 2014; 57: 2832

    • For a review and selected papers, see:
    • 3a Koval I. Russ. J. Org. Chem. 2007; 43: 319 ; and references cited therein
    • 3b Gohain M, Marais C, Bezuidenhoudt BC. B. Tetrahedron Lett. 2012; 53: 1048
    • 3c Firouzabadi H, Iranpoor N, Jafarpour M. Tetrahedron Lett. 2006; 47: 93
    • 3d Falck JR, Lai J.-Y, Cho S.-D, Yu J. Tetrahedron Lett. 1999; 40: 2903
    • 3e Guindon Y, Frenette R, Fortin R, Rokach J. J. Org. Chem. 1983; 48: 1357

      For selected reviews and papers, see:
    • 4a Ghaderi A. Tetrahedron 2016; 72: 4758 ; and references cited therein
    • 4b Kondo T, Mitsudo T.-a. Chem. Rev. 2000; 100: 3205 ; and references cited therein

    • For Pd, see:
    • 4c Scattolin T, Senol E, Yin G, Guo Q, Schoenebeck F. Angew. Chem. Int. Ed. 2018; 57: 12425
    • 4d Fernandez-Rodriguez MA, Hartwig JF. J. Org. Chem. 2009; 74: 1663
    • 4e Lee J.-Y, Lee PH. J. Org. Chem. 2008; 73: 7413
    • 4f Murata M, Buchwald SL. Tetrahedron 2004; 60: 7397
    • 4g Itoh T, Mase T. Org. Lett. 2004; 6: 4587
    • 4h Migita T, Shimizu T, Asami Y, Shiobara J.-i, Kato Y, Kosugi M. Bull. Chem. Soc. Jpn. 1980; 53: 1385

    • For Fe
    • 4i Correa A, Carril M, Bolm C. Angew. Chem. Int. Ed. 2008; 47: 2880

    • For Cu, see:
    • 4j Bates CG, Gujadhur RK, Venkataraman D. Org. Lett. 2002; 4: 2803

    • For Co, see:
    • 4k Wong Y.-C, Jayanth TT, Cheng C.-H. Org. Lett. 2006; 8: 5613

    • For Ni, see:
    • 4l Zhang Y, Ngeow KC, Ying JY. Org. Lett. 2007; 9: 3495
  • 5 Nishimoto Y, Okita A, Yasuda M, Baba A. Org. Lett. 2012; 14: 1846

    • For selected papers of the preparation of alkyl aryl sulfides using diaryl disulfides and 1,3-diketones as another application, see:
    • 6a Zou L.-H, Zhao C, Li P.-G, Wang Y, Li J. J. Org. Chem. 2017; 82: 12892
    • 6b Zou L.-H, Priebbenow DL, Wang L, Mottweiler J, Bolm C. Adv. Synth. Catal. 2013; 355: 2558
  • 7 Prasad DJ. C, Sekar G. Org. Lett. 2011; 13: 1008
  • 9 Firouzabadi H, Iranpoor N, Gholinejad M. Adv. Synth. Catal. 2010; 352: 119
    • 10a Zhao P, Yin H, Gao H, Xi C. J. Org. Chem. 2013; 78: 5001
    • 10b Firouzabadi H, Iranpoor N, Samadi A. Tetrahedron Lett. 2014; 55: 1212
  • 11 Rostami A, Rostami A, Iranpoor N, Zolfigol MA. Tetrahedron Lett. 2016; 57: 192
  • 12 Gholinejad M. Eur. J. Org. Chem. 2015; 4162
  • 13 Jiang Y, Qin Y, Xie S, Zhang X, Dong J, Ma D. Org. Lett. 2009; 11: 5250
  • 14 Wang M, Qiao Z, Zhao J, Jiang X. Org. Lett. 2018; 20: 6193
  • 16 For sulfide 9, a common separation from the remaining excess amounts of ethyl benzoate was rather difficult, which resulted in the decrease in the isolated yield.
  • 17 For sulfides 8 and 12, after each reaction, most starting material was consumed, and no formation of any by-product was observed.
  • 18 When the typical sulfidation was conducted with an aliphatic ester, ethyl acetate, the yield of 1 decreased greatly to 31% GC yield with the formation of symmetrical sulfide 2 (41% GC yield).
  • 19 One reviewer pointed out that introduction of an election-withdrawing group, such as a chloro or nitro group, onto the p-position of ethyl benzoate did not show a significantly positive result. The authors anticipate that an increase in electrophilicity of a carbonyl moiety of ethyl benzoate by introduction of an electron-withdrawing group would lead a side reaction of a thiosilane intermediate with an alkyl benzoate. There has been no reasonable explanation for the result at this stage.

    • For selected reviews and recent papers of organoselenium chemistry, see:
    • 20a Freudendahl DM, Shahzad SA, Wirth T. Eur. J. Org. Chem. 2009; 1649 ; and the references cited therein
    • 20b Wirth T. Tetrahedron 1999; 55: 1 ; and the references cited therein
    • 20c Baird CP, Rayner CM. J. Chem. Soc., Perkin Trans. 1 1998; 1973 ; and the references cited therein
    • 20d Murai T, Yoshida A, Mizutani T, Kubuki H, Yamaguchi K, Maruyama T, Shibahara F. Chem. Lett. 2017; 46: 1017
    • 20e Taniguchi N. Tetrahedron 2012; 68: 10510
  • 21 For an example of a Lewis acid catalyzed substitution of a thiosilane leading to a sulfide, see ref. 5.
  • 22 As a control experiment, shown in Scheme 5 (eq. 1), when the reaction of thiosilane 25 with ethyl benzoate was examined without CuI, the corresponding sulfide 9 was obtained in 96% GC yield. In the case of the reaction shown in Scheme 6, a similar result (96% GC yield of 9) was observed. These results strongly support the conclusion that a latter part of the coupling reaction proceeds via SN2.
  • 23 Alwedi E, Zakharov LN, Blakemore PR. Eur. J. Org. Chem. 2014; 6643
  • 24 Cabiddu S, Fattuoni C, Floris C, Gelli G, Melis S, Sotgiu F. Tetrahedron 1990; 46: 861
  • 25 Cabiddu MG, Cabiddu S, Cadoni E, De Montis S, Fattuoni C, Melis S. Tetrahedron 2004; 60: 3915
  • 26 Czarnik AW. J. Org. Chem. 1984; 49: 924
  • 27 Testaferri L, Tiecco M, Tingoli M, Chianelli D, Maiolo F. Tetrahedron 1982; 38: 2721
  • 28 Tang R.-y, Zhong P, Lin Q.-l. Synthesis 2007; 85
  • 29 Scharf A, Goldberg I, Vigalok A. Inorg. Chem. 2014; 53: 12
  • 30 Semple G, Santora VJ, Smith JM, Covel JA, Hayashi R, Gallardo C, Ibarra JB, Schultz JA, Park DM, Estrada SA, Hofilena BJ, Smith BM, Ren A, Suarez M, Frazer J, Edwards JE, Hart R, Hauser EK, Lorea J, Grottick AJ. Bioorg. Med. Chem. Lett. 2012; 22: 71
  • 31 Yatsumonji Y, Okada O, Tsubouchi A, Takeda T. Tetrahedron 2006; 62: 9981
  • 32 Morgan KF, Hollingsworth IA, Bull JA. Org. Biomol. Chem. 2015; 13: 5265
  • 33 Motoshima K, Sato A, Yorimitsu H, Oshima K. Bull. Chem. Soc. Jpn. 2007; 80: 2229
  • 34 Thomas AM, Asha S, Sindhu KS, Anilkumar G. Tetrahedron Lett. 2015; 56: 6560
  • 35 Sengupta D, Bhowmik K, De G, Basu B. Beilstein J. Org. Chem. 2017; 13: 1796
  • 36 Movassagh B, Yousefi A. Monatsh. Chem. 2015; 146: 135
  • 37 Narayanaperumal S, Alberto EE, Gul K, Rodrigues OE. D, Braga AL. J. Org. Chem. 2010; 75: 3886