Subscribe to RSS
DOI: 10.1055/s-0037-1610779
Titanium and Cobalt Bimetallic Radical Redox Relay for the Isomerization of N-Bz Aziridines to Allylic Amides
This work is supported by the National Institute of General Medical Sciences (R01GM134088).
Abstract
Herein a bimetallic radical redox-relay strategy is employed to generate alkyl radicals under mild conditions with titanium(III) catalysis and terminated via hydrogen atom transfer with cobalt(II) catalysis to enact base-free isomerizations of N-Bz aziridines to N-Bz allylic amides. This reaction provides an alternative strategy for the synthesis of allylic amides from alkenes via a three-step sequence to accomplish a formal transpositional allylic amination.
Key words
radical redox relay - titanium catalysis - cobalt catalysis - bimetallic - aziridines - allylic amines - allylic amidesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1610779.
- Supporting Information
Primary Data
Primary data for this article are available online at https://zenodo.org/record/5138200 and can be cited using the following DOI: 10.5281/zenodo.5138200.
Publication History
Received: 11 May 2021
Accepted after revision: 24 June 2021
Article published online:
29 July 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Trost B, Krische M, Radinov R, Zanoni G. J. Am. Chem. Soc. 1996; 118: 6297
- 1b Kawatsura M, Hirakawa T, Tanaka T, Ikeda D, Shuichi H, Itoh T. Tetrahedron Lett. 2008; 15: 2450
- 1c Nagano T, Kobayashi S. J. Am. Chem. Soc. 2009; 131: 4200
- 1d Dubovyk I, Watson I, Yudin A. J. Org. Chem. 2013; 78: 1559
- 2a Takeuchi R, Shiga N. Org. Lett. 1999; 1: 265
- 2b Takeuchi R, Ue N, Tanabe K, Yamashita K, Shiga N. J. Am. Chem. Soc. 2001; 123: 9525
- 2c Ohmura T, Hartwig J. J. Am. Chem. Soc. 2002; 124: 15164
- 2d Defieber C, Ariger M, Moriel P, Carreira E. Angew. Chem. Int. Ed. 2007; 46: 3139
- 2e Yang Z, Jiang R, Zheng C, You S. J. Am. Chem. Soc. 2018; 140: 3114
- 2f Kim S, Schwartz L, Zbieg J, Stivala C, Krische M. J. Am. Chem. Soc. 2019; 141: 671
- 3a Overman LE. J. Am. Chem. Soc. 1974; 96: 597
- 3b Xing D, Yang D. Org. Lett. 2010; 12: 1068
- 3c Kirsch SF, Overman LE, Watson MP. J. Org. Chem. 2004; 69: 8101
- 4a Noble A, MacMillan D. J. Am. Chem. Soc. 2014; 136: 11602
- 4b Till N, Smith R, MacMillan D. J. Am. Chem. Soc. 2018; 140: 5701
- 5 Goldfogel M, Roberts C, Meek S. J. Am. Chem. Soc. 2014; 136: 6227
- 6 Yukawa T, Seelig B, Xu Y, Morimoto H, Matsunaga S, Berkessel A, Shibasaki M. J. Am. Chem. Soc. 2010; 132: 11988
- 7 Yi X, Hu X. Angew. Chem. Int. Ed. 2019; 58: 4700
- 8 Bahena E, Griffin S, Schafer L. J. Am. Chem. Soc. 2020; 142: 20566
- 9 Clark J, Roche C. Chem. Commun. 2005; 5175
- 10a Fix S, Brice J, Stahl S. Angew. Chem. Int. Ed. 2002; 41: 164
- 10b Reed S, White C. J. Am. Chem. Soc. 2008; 130: 3316
- 10c McDonald R, Stahl S. Angew. Chem. Int. Ed. 2010; 49: 5529
- 10d Bao H, Tambar U. J. Am. Chem. Soc. 2012; 134: 18495
- 10e Pattillo C, Strambeanu I, Calleja P, Vermeulen N, Mizuno T, White C. J. Am. Chem. Soc. 2016; 138: 1265
- 11a Burman J, Harris R, Farr C, Bacsa J, Blakey S. ACS Catal. 2019; 9: 5474
- 11b Kazerouni A, Nelson T, Chen S, Sharp K, Blakey S. J. Org. Chem. 2019; 84: 13179
- 11c Knecht T, Mondal S, Ye J, Das M, Glorius F. Angew. Chem. Int. Ed. 2019; 58: 7117
- 11d Lei H, Rovis T. J. Am. Chem. Soc. 2019; 141: 2268
- 11e Lei H, Rovis T. Nat. Chem. 2020; 12: 725
- 12a Burman J, Blakey S. Angew. Chem. Int. Ed. 2017; 56: 13666
- 12b Collet F, Lescot C, Liang C, Dauban P. Dalton Trans. 2010; 39: 10401
- 13 Harvey M, Musaev D, Du Bois J. J. Am. Chem. Soc. 2011; 133: 17207
- 14 Hu Y, Lang K, Li C, Gill J, Kim I, Lu H, Fields K, Marshall M, Cheng Q, Cui X, Wojtas L, Zhang P. J. Am. Chem. Soc. 2019; 141: 18160
- 15a Ma Z, Zhou Z, Kurti L. Angew. Chem. Int. Ed. 2017; 56: 9886
- 15b Cheng Q, Zhou Z, Jiang H, Siitonen J, Ess D, Zhang X, Kurti L. Nat. Catal. 2020; 3: 386
- 16 Zhang Z, Scheffold R. Helv. Chim. Acta 1993; 76: 2602
- 17a Gansäuer A, Otte M, Shi L. J. Am. Chem. Soc. 2011; 133: 416
- 17b Yao C, Dahmen T, Gansäuer A, Norton J. Science 2019; 364: 764
- 18a Birmingham JM, Fischer AK, Wilkinson G. Naturwissenschaften 1955; 42: 96
- 18b Natta G, Dall’asta G, Mazzanti G, Gianni U, Cesca S. Angew. Chem. 1959; 71: 205
- 18c Reid A, Wailes P. Aust. J. Chem. 1965; 18: 9
- 18d Green M, Lucas C. Dalton Trans. 1972; 1000
- 19a Nugent WA, RajanBabu TV. J. Am. Chem. Soc. 1988; 110: 8561
- 19b RajanBabu TV, Nugent WA. J. Am. Chem. Soc. 1994; 116: 986
- 20a Gansäuer A, Lauterbach T, Bluhm H, Noltemeyer M. Angew. Chem. Int. Ed. 1999; 38: 2909
- 20b Gansäuer A, Lauterbach T, Geich-Gimbel D. Chem. Eur. J. 2004; 10: 4983
- 20c Congonul A, Behlendorf M, Gansäuer A, van Gastel M. Inorg. Chem. 2013; 52: 11859
- 20d Zhang Z, Richrath R, Gansäuer A. ACS Catal. 2019; 9: 3208
- 21 Hao W, Wu X, Sun J, Siu J, MacMillan S, Lin S. J. Am. Chem. Soc. 2017; 139: 12141
- 22 For a recent review of Ti(III) chemistry, see: McCallum T, Wu X, Lin S. J. Org. Chem. 2019; 84: 14369
- 23a Shevick S, Obradors C, Shenvi R. J. Am. Chem. Soc. 2018; 140: 12056
- 23b Gaspar B, Carreira E. J. Am. Chem. Soc. 2009; 131: 13214
- 23c Li G, Kuo J, Han A, Abuyuan J, Young L, Norton J, Palmer J. J. Am. Chem. Soc. 2016; 138: 7698
- 23d Discolo C, Touney E, Pronin S. J. Am. Chem. Soc. 2019; 141: 17527
- 23e Zhou X, Yang F, Sun H, Yin Y, Ye W, Zhu R. J. Am. Chem. Soc. 2019; 141: 7250
- 23f Song L, Fu N, Ernst BG, Lee WH, Frederick MO, DiStasio JrR. A, Lin S. Nat. Chem. 2020; 12: 747
- 23g Crossley S, Obradors C, Marinez R, Shenvi R. Chem. Rev. 2016; 116: 8912
- 23h Hapke M, Hilt G. Cobalt Catalysis in Organic Synthesis: Methods and Reactions. Wiley; New York: 2020
- 24a Sun X, Chen J, Ritter T. Nat. Chem. 2018; 10: 1229
- 24b Dighe SU, Juliá F, Luridiana A, Douglas JJ, Leonori D. Nature 2020; 584: 75
- 24c West J, Huang D, Sorensen E. Nat. Commun. 2015; 6: 10093
- 25 Hao W, Wu X, Sun J, Siu J, MacMillan S, Lin S. J. Am. Chem. Soc. 2017; 139: 12141
- 26 Zhang Q-Z, Vogelsang E, Qu Z-W, Grimme S, Gansäuer A. Angew. Chem. Int. Ed. 2017; 56: 12654
- 27 Bach R, Dmitrenko O. J. Org. Chem. 2002; 67: 3884
- 28 Ye K-Y, McCallum T, Lin S. J. Am. Chem. Soc. 2019; 141: 9548
- 29 Gansäuer A, Hildebrandt S, Michelmann A, Dahmen T, Laufenberg D, Kube C, Fianu G, Flowers R. Angew. Chem. Int. Ed. 2015; 54: 7003
- 30 Ferraris D, Drury W, Cox C, Lectka T. J. Org. Chem. 1998; 63: 4568
- 31 Gansäuer A, Kube C, Daasbjerg K, Sure R, Grimme S, Fianu G, Sadasivam D, Flowers R. J. Am. Chem. Soc. 2014; 136: 1663
- 32 Daasbjerg K, Svith H, Grimme S, Gerenkamp M, Muck-Lichtenfeld C, Gansäuer A, Barchuk A. Top Curr. Chem. 2006; 263: 39
- 33a Bermejo F, Sandoval C. J. Org. Chem. 2004; 69: 5275
- 33b Fernández-Mateos A, Madrazo SE, Teijón PH, González R. Eur. J. Org. Chem. 2010; 856
- 34 Wu X, Hao W, Ye K-Y, Jiang B, Pombar G, Song Z, Lin S. J. Am. Chem. Soc. 2018; 140: 14836
- 35 Crossley SW. M, Barabé F, Shenvi RA. J. Am. Chem. Soc. 2014; 136: 16788
- 36 Blanksby S, Ellison G. Acc. Chem. Res. 2003; 36: 255
For examples employing Pd catalysis, see:
For recent examples employing Ir catalysis, see:
For examples of Pd-catalyzed allylic amination, see:
For examples of Ir-catalyzed allylic amination, see:
For examples of Rh-catalyzed allylic amination, see:
For other examples of cooperative catalysis featuring Ti, see:
For historical syntheses, see:
For recent examples, see:
For reviews, see:
For recent examples, see: