Synthesis 2021; 53(22): 4213-4220
DOI: 10.1055/s-0037-1610779
special topic
Special Issue dedicated to Prof. Sarah Reisman, recipient of the 2019 Dr. Margaret Faul Women in Chemistry Award

Titanium and Cobalt Bimetallic Radical Redox Relay for the Isomerization of N-Bz Aziridines to Allylic Amides

Devin P. Wood
,
Weiyang Guan
,
Song Lin
This work is supported by the National Institute of General Medical Sciences (R01GM134088).


Abstract

Herein a bimetallic radical redox-relay strategy is employed to generate alkyl radicals under mild conditions with titanium(III) catalysis and terminated via hydrogen atom transfer with cobalt(II) catalysis to enact base-free isomerizations of N-Bz aziridines to N-Bz allylic amides. This reaction provides an alternative strategy for the synthesis of allylic amides from alkenes via a three-step sequence to accomplish a formal transpositional allylic amination.

Supporting Information

Primary Data



Publication History

Received: 11 May 2021

Accepted after revision: 24 June 2021

Article published online:
29 July 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • For examples employing Pd catalysis, see:
    • 1a Trost B, Krische M, Radinov R, Zanoni G. J. Am. Chem. Soc. 1996; 118: 6297
    • 1b Kawatsura M, Hirakawa T, Tanaka T, Ikeda D, Shuichi H, Itoh T. Tetrahedron Lett. 2008; 15: 2450
    • 1c Nagano T, Kobayashi S. J. Am. Chem. Soc. 2009; 131: 4200
    • 1d Dubovyk I, Watson I, Yudin A. J. Org. Chem. 2013; 78: 1559

      For recent examples employing Ir catalysis, see:
    • 2a Takeuchi R, Shiga N. Org. Lett. 1999; 1: 265
    • 2b Takeuchi R, Ue N, Tanabe K, Yamashita K, Shiga N. J. Am. Chem. Soc. 2001; 123: 9525
    • 2c Ohmura T, Hartwig J. J. Am. Chem. Soc. 2002; 124: 15164
    • 2d Defieber C, Ariger M, Moriel P, Carreira E. Angew. Chem. Int. Ed. 2007; 46: 3139
    • 2e Yang Z, Jiang R, Zheng C, You S. J. Am. Chem. Soc. 2018; 140: 3114
    • 2f Kim S, Schwartz L, Zbieg J, Stivala C, Krische M. J. Am. Chem. Soc. 2019; 141: 671
    • 4a Noble A, MacMillan D. J. Am. Chem. Soc. 2014; 136: 11602
    • 4b Till N, Smith R, MacMillan D. J. Am. Chem. Soc. 2018; 140: 5701
  • 5 Goldfogel M, Roberts C, Meek S. J. Am. Chem. Soc. 2014; 136: 6227
  • 6 Yukawa T, Seelig B, Xu Y, Morimoto H, Matsunaga S, Berkessel A, Shibasaki M. J. Am. Chem. Soc. 2010; 132: 11988
  • 7 Yi X, Hu X. Angew. Chem. Int. Ed. 2019; 58: 4700
  • 8 Bahena E, Griffin S, Schafer L. J. Am. Chem. Soc. 2020; 142: 20566
  • 9 Clark J, Roche C. Chem. Commun. 2005; 5175

    • For examples of Pd-catalyzed allylic amination, see:
    • 10a Fix S, Brice J, Stahl S. Angew. Chem. Int. Ed. 2002; 41: 164
    • 10b Reed S, White C. J. Am. Chem. Soc. 2008; 130: 3316
    • 10c McDonald R, Stahl S. Angew. Chem. Int. Ed. 2010; 49: 5529
    • 10d Bao H, Tambar U. J. Am. Chem. Soc. 2012; 134: 18495
    • 10e Pattillo C, Strambeanu I, Calleja P, Vermeulen N, Mizuno T, White C. J. Am. Chem. Soc. 2016; 138: 1265

      For examples of Ir-catalyzed allylic amination, see:
    • 11a Burman J, Harris R, Farr C, Bacsa J, Blakey S. ACS Catal. 2019; 9: 5474
    • 11b Kazerouni A, Nelson T, Chen S, Sharp K, Blakey S. J. Org. Chem. 2019; 84: 13179
    • 11c Knecht T, Mondal S, Ye J, Das M, Glorius F. Angew. Chem. Int. Ed. 2019; 58: 7117
    • 11d Lei H, Rovis T. J. Am. Chem. Soc. 2019; 141: 2268
    • 11e Lei H, Rovis T. Nat. Chem. 2020; 12: 725

      For examples of Rh-catalyzed allylic amination, see:
    • 12a Burman J, Blakey S. Angew. Chem. Int. Ed. 2017; 56: 13666
    • 12b Collet F, Lescot C, Liang C, Dauban P. Dalton Trans. 2010; 39: 10401
  • 13 Harvey M, Musaev D, Du Bois J. J. Am. Chem. Soc. 2011; 133: 17207
  • 14 Hu Y, Lang K, Li C, Gill J, Kim I, Lu H, Fields K, Marshall M, Cheng Q, Cui X, Wojtas L, Zhang P. J. Am. Chem. Soc. 2019; 141: 18160
    • 15a Ma Z, Zhou Z, Kurti L. Angew. Chem. Int. Ed. 2017; 56: 9886
    • 15b Cheng Q, Zhou Z, Jiang H, Siitonen J, Ess D, Zhang X, Kurti L. Nat. Catal. 2020; 3:  386
  • 16 Zhang Z, Scheffold R. Helv. Chim. Acta 1993; 76: 2602

    • For other examples of cooperative catalysis featuring Ti, see:
    • 17a Gansäuer A, Otte M, Shi L. J. Am. Chem. Soc. 2011; 133: 416
    • 17b Yao C, Dahmen T, Gansäuer A, Norton J. Science 2019; 364: 764

      For historical syntheses, see:
    • 18a Birmingham JM, Fischer AK, Wilkinson G. Naturwissenschaften 1955; 42: 96
    • 18b Natta G, Dall’asta G, Mazzanti G, Gianni U, Cesca S. Angew. Chem. 1959; 71: 205
    • 18c Reid A, Wailes P. Aust. J. Chem. 1965; 18: 9
    • 18d Green M, Lucas C. Dalton Trans. 1972; 1000
    • 19a Nugent WA, RajanBabu TV. J. Am. Chem. Soc. 1988; 110: 8561
    • 19b RajanBabu TV, Nugent WA. J. Am. Chem. Soc. 1994; 116: 986
    • 20a Gansäuer A, Lauterbach T, Bluhm H, Noltemeyer M. Angew. Chem. Int. Ed. 1999; 38: 2909
    • 20b Gansäuer A, Lauterbach T, Geich-Gimbel D. Chem. Eur. J. 2004; 10: 4983
    • 20c Congonul A, Behlendorf M, Gansäuer A, van Gastel M. Inorg. Chem. 2013; 52: 11859
    • 20d Zhang Z, Richrath R, Gansäuer A. ACS Catal. 2019; 9: 3208
  • 21 Hao W, Wu X, Sun J, Siu J, MacMillan S, Lin S. J. Am. Chem. Soc. 2017; 139: 12141
  • 22 For a recent review of Ti(III) chemistry, see: McCallum T, Wu X, Lin S. J. Org. Chem. 2019; 84: 14369

    • For recent examples, see:
    • 23a Shevick S, Obradors C, Shenvi R. J. Am. Chem. Soc. 2018; 140: 12056
    • 23b Gaspar B, Carreira E. J. Am. Chem. Soc. 2009; 131: 13214
    • 23c Li G, Kuo J, Han A, Abuyuan J, Young L, Norton J, Palmer J. J. Am. Chem. Soc. 2016; 138: 7698
    • 23d Discolo C, Touney E, Pronin S. J. Am. Chem. Soc. 2019; 141: 17527
    • 23e Zhou X, Yang F, Sun H, Yin Y, Ye W, Zhu R. J. Am. Chem. Soc. 2019; 141: 7250
    • 23f Song L, Fu N, Ernst BG, Lee WH, Frederick MO, DiStasio JrR. A, Lin S. Nat. Chem. 2020; 12:  747

    • For reviews, see:
    • 23g Crossley S, Obradors C, Marinez R, Shenvi R. Chem. Rev. 2016; 116: 8912
    • 23h Hapke M, Hilt G. Cobalt Catalysis in Organic Synthesis: Methods and Reactions. Wiley; New York: 2020

      For recent examples, see:
    • 24a Sun X, Chen J, Ritter T. Nat. Chem. 2018; 10: 1229
    • 24b Dighe SU, Juliá F, Luridiana A, Douglas JJ, Leonori D. Nature 2020; 584:  75
    • 24c West J, Huang D, Sorensen E. Nat. Commun. 2015; 6: 10093
  • 25 Hao W, Wu X, Sun J, Siu J, MacMillan S, Lin S. J. Am. Chem. Soc. 2017; 139: 12141
  • 26 Zhang Q-Z, Vogelsang E, Qu Z-W, Grimme S, Gansäuer A. Angew. Chem. Int. Ed. 2017; 56: 12654
  • 27 Bach R, Dmitrenko O. J. Org. Chem. 2002; 67: 3884
  • 28 Ye K-Y, McCallum T, Lin S. J. Am. Chem. Soc. 2019; 141: 9548
  • 29 Gansäuer A, Hildebrandt S, Michelmann A, Dahmen T, Laufenberg D, Kube C, Fianu G, Flowers R. Angew. Chem. Int. Ed. 2015; 54: 7003
  • 30 Ferraris D, Drury W, Cox C, Lectka T. J. Org. Chem. 1998; 63: 4568
  • 31 Gansäuer A, Kube C, Daasbjerg K, Sure R, Grimme S, Fianu G, Sadasivam D, Flowers R. J. Am. Chem. Soc. 2014; 136: 1663
  • 32 Daasbjerg K, Svith H, Grimme S, Gerenkamp M, Muck-Lichtenfeld C, Gansäuer A, Barchuk A. Top Curr. Chem. 2006; 263: 39
    • 33a Bermejo F, Sandoval C. J. Org. Chem. 2004; 69: 5275
    • 33b Fernández-Mateos A, Madrazo SE, Teijón PH, González R. Eur. J. Org. Chem. 2010; 856
  • 34 Wu X, Hao W, Ye K-Y, Jiang B, Pombar G, Song Z, Lin S. J. Am. Chem. Soc. 2018; 140: 14836
  • 35 Crossley SW. M, Barabé F, Shenvi RA. J. Am. Chem. Soc. 2014; 136: 16788
  • 36 Blanksby S, Ellison G. Acc. Chem. Res. 2003; 36: 255