Synlett 2019; 30(14): 1693-1697
DOI: 10.1055/s-0037-1610722
cluster
© Georg Thieme Verlag Stuttgart · New York

Rhodium-Catalyzed Asymmetric Addition of Arylboronic Acids to Glyoxylates: Access to Optically Active Substituted Mandelic Acid Esters

Diao Chen
a   State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. of China
,
Jian-Guo Liu
b   Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Blvd., Shenzhen 518055, P. R. of China   Email: xumh@sustech.edu.cn
,
Xu Zhang
a   State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. of China
,
Ming-Hua Xu
a   State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. of China
b   Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Blvd., Shenzhen 518055, P. R. of China   Email: xumh@sustech.edu.cn
› Author Affiliations
The National Science & Technology Major Project (2018ZX09711002-006), National Natural Science Foundation of China (81521005, 21472205, 21325209)
Further Information

Publication History

Received: 31 May 2019

Accepted after revision: 25 June 2019

Publication Date:
17 July 2019 (online)


D.C. and J.G.L. contributed equally.Published as part of the Cluster Organosulfur and Organoselenium Compounds in Catalysis

Abstract

A rhodium-catalyzed enantioselective addition of glyoxylates to arylboronic acids promoted by a simple chiral sulfinamide-based olefin ligand under mild reaction conditions is described. The reaction provides access to a variety of optically active substituted mandelic acid esters in good yields with up to 83% ee. The catalytic system is also applicable to pyruvate addition. The synthetic utility of this method is highlighted by a formal synthesis of the antiplatelet drug clopidogrel.

Supporting Information

 
  • References and Notes

    • 1a Comprehensive Asymmetric Catalysis . Jacobsen EN, Pfaltz A, Yamamoto H. Springer; Berlin: 1999
    • 1b Coppola GM, Schuster FH. α-Hydroxy Acids in Enantioselective Syntheses. VCH; Weinheim: 1997
    • 1c Juan Y.-P, Tsai T.-H. J. Chromatogr. A 2005; 1088: 146
    • 1d Hill JC, White RH, Barratt MD, Mignini E. J. Appl. Cosmetol. 1988; 6: 53
    • 1e Funke AB. H, Ernsting MJ. E, Rekker RF, Nauta WT. Arzneim.-Forsch. 1953; 3: 503
    • 1f Daußmann T, Hennemann HG, Rosen TC, Dünkelmann P. Chem. Ing. Tech. 2006; 78: 249
    • 2a Zhu D, Yang Y, Hua L. J. Org. Chem. 2006; 71: 4202
    • 2b Kratzer R, Nidetzky B. Chem. Commun. 2007; 1047
    • 2c Kanomata N, Nakata T. J. Am. Chem. Soc. 2000; 122: 4563
    • 2d He C, Chang D, Zhang J. Tetrahedron: Asymmetry 2008; 19: 1347
    • 2e Applegate GA, Cheloha RW, Nelson DL, Berkowitz DB. Chem. Commun. 2011; 47: 2420
    • 3a Zhu L, Meng Q, Fan W, Xie X, Zhang Z. J. Org. Chem. 2010; 75: 6027
    • 3b Yan P.-C, Xie J.-H, Zhang X.-D, Chen K, Li Y.-Q, Zhou Q.-L, Che D.-Q. Chem. Commun. 2014; 50: 15987
    • 3c Sun X, Zhou L, Li W, Zhang X. J. Org. Chem. 2008; 73: 1143
    • 3d Ramachandran PV, Pitre S, Brown HC. J. Org. Chem. 2002; 67: 5315
    • 3e Meng Q, Sun Y, Ratovelomanana-Vidal V, Genêt JP, Zhang Z. J. Org. Chem. 2008; 73: 3842
    • 3f Enders D, Stöckel BA, Rembiak A. Chem. Commun. 2014; 50: 4489
    • 3g Wu W, Zou S, Lin L, Ji J, Zhang Y, Ma B, Liu X, Feng X. Chem. Commun. 2017; 53: 3232
    • 3h Gu G, Yang T, Lu J, Wen J, Dang L, Zhang X. Org. Chem. Front. 2018; 5: 1209
    • 4a Ishihara K, Yano T, Fushimi M. J. Fluorine Chem. 2008; 129: 994
    • 4b Russell AE, Miller SP, Morken JP. J. Org. Chem. 2000; 65: 8381
    • 4c Schmitt E, Schiffers I, Bolm C. Tetrahedron Lett. 2009; 50: 3185
    • 4d Wang P, Tao W.-J, Sun X.-L, Liao S, Tang Y. J. Am. Chem. Soc. 2013; 135: 16849
    • 4e Wu W, Liu X, Zhang Y, Ji J, Huang T, Lin L, Feng X. Chem. Commun. 2015; 51: 11646
    • 5a Zhang Y, Liu X, Zhou L, Wu W, Huang T, Liao Y, Lin L, Feng X. Chem. Eur. J. 2014; 20: 15884
    • 5b Tang L, Deng L. J. Am. Chem. Soc. 2002; 124: 2870
    • 5c Sakakura A, Umemura S, Ishihara K. Synlett 2009; 1647
    • 5d Ebbers EJ, Ariaans GJ. A, Bruggink A, Zwanenburg B. Tetrahedron: Asymmetry 1999; 10: 3701
    • 5e Alamsetti SK, Sekar G. Chem. Commun. 2010; 46: 7235
    • 6a Bigi F, Bocelli G, Maggi R, Sartori G. J. Org. Chem. 1999; 64: 5004
    • 6b Gathergood N, Zhuang W, Jørgensen KA. J. Am. Chem. Soc. 2000; 122: 12517
    • 6c Majer J, Kwiatkowski P, Jurczak J. Org. Lett. 2008; 10: 2955
    • 6d Majer J, Kwiatkowski P, Jurczak J. Org. Lett. 2009; 11: 4636
    • 6e Malhotra SV, Xiao Y. Aust. J. Chem. 2006; 59: 468
    • 6f Vila C, Quintero L, Blay G, Muñoz MC, Pedro JR. Org. Lett. 2016; 18: 5652
    • 6g Yuan Y, Wang X, Li X, Ding K. J. Org. Chem. 2004; 69: 146
    • 6h Zhang W, Wang PG. J. Org. Chem. 2000; 65: 4732
  • 7 Aikawa K, Hioki Y, Mikami K. Chem. Asian J. 2010; 5: 2346
    • 8a Marques CS, Burke AJ. Tetrahedron: Asymmetry 2013; 24: 628
    • 8b Marques CS, Dindaroğlu M, Schmalz H.-G, Burke AJ. RSC Adv. 2014; 4: 6035
    • 8c Yamamoto Y, Shirai T, Miyaura N. Chem. Commun. 2012; 48: 2803
    • 9a Feng X, Du H. Asian J. Org. Chem. 2012; 1: 204
    • 9b Li Y, Xu M.-H. Chem. Commun. 2014; 50: 3771
    • 9c Dong H.-Q, Xu M.-H, Feng C.-G, Sun X.-W, Lin G.-Q. Org. Chem. Front. 2015; 2: 73
    • 10a Zhu T.-S, Jin S.-S, Xu M.-H. Angew. Chem. Int. Ed. 2012; 51: 780
    • 10b Wang H, Zhu T.-S, Xu M.-H. Org. Biomol. Chem. 2012; 10: 9158
    • 10c Zhu T.-S, Chen J.-P, Xu M.-H. Chem. Eur. J. 2013; 19: 865
    • 10d Zhu D.-X, Chen W.-W, Xu M.-H. Tetrahedron 2016; 72: 2637
    • 10e Zhang Z.-F, Zhu D.-X, Chen W.-W, Xu B, Xu M.-H. Org. Lett. 2017; 19: 2726
    • 11a Wang H, Jiang T, Xu M.-H. J. Am. Chem. Soc. 2013; 135: 971
    • 11b Wang H, Li Y, Xu M.-H. Org. Lett. 2014; 16: 3962
    • 11c Jiang T, Wang Z, Xu M.-H. Org. Lett. 2015; 17: 528
    • 11d Liu M.-Q, Jiang T, Xu M.-H. Org. Chem. Front. 2016; 3: 944
    • 11e Zhang X, Xu B, Xu M.-H. Org. Chem. Front. 2017; 4: 2159
    • 11f Jiang T, Chen W.-W, Xu M.-H. Org. Lett. 2017; 19: 2138
  • 12 Liu G, Cogan DA, Ellman JA. J. Am. Chem. Soc. 1997; 119: 9913
  • 13 In Rh-catalyzed asymmetric 1,4-additions, the carbon chirality has no effect on the enantioselectivity control, see: Feng X, Wang Y, Wei B, Yang J, Du H. Org. Lett. 2011; 13: 3300
  • 14 CCDC 1919774 contains the supplementary crystallographic data for compound L12. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures
  • 15 Blay G, Fernández I, Marco-Aleixandre A, Pedro JR. Org. Lett. 2006; 8: 1287
  • 16 Castaldi G, Barreca G, Bologna A. WO 03093276, 2003
  • 17 Isopropyl Aryl(hydroxy)acetates 3aq; General ProcedureUnder an Ar atmosphere, a solution of the appropriate glyoxylate 1 (0.2 mmol), [Rh(COE)2Cl]2 (1.5 mol%), L12 (3.3 mol%), and arylboronic acid (0.4 mmol) in 1,4-dioxane (2 mL) was stirred at r.t. for 30 min. 0.1 M aq KOH (0.1 mL, 0.01 mmol) was then added and the resulting mixture was stirred 40 °C for 5 h until the starting materials disappeared (TLC). The solvent was evaporated under vacuum and the residue was purified by column chromatography (silica gel).
  • 18 Isopropyl (2S)-(3,4-Dimethoxyphenyl)(hydroxy)acetate (3o)White solid; yield: 38.1 mg (75%, 72% ee). 1H NMR (400 MHz, CDCl3): δ = 7.01–6.90 (m, 2 H), 6.84 (d, J = 8.2 Hz, 1 H), 5.07 (m, 2 H), 3.88 (d, J = 1.2 Hz, 6 H), 3.54 (s, 1 H), 1.28 (d, J = 6.2 Hz, 3 H), 1.13 (d, J = 6.3 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 173.4, 149.1, 149.0, 131.2, 119.1, 111.0, 109.4, 72.7, 70.1, 55.9, 55.9, 21.8, 21.5.Isopropyl (2S)-(3,5-Dimethoxyphenyl)(hydroxy)acetate (3q)White solid; yield: 50.3 mg (99%, 75% ee). 1H NMR (400 MHz, CDCl3): δ = 7.01–6.90 (m, 2 H), 6.84 (d, J = 8.2 Hz, 1 H), 5.07 (m, 2 H), 3.88 (s, 6 H), 3.54 (s, 1 H), 1.28 (d, J = 6.2 Hz, 3 H), 1.13 (d, J = 6.3 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 173.1, 160.9, 140.9, 104.4, 100.6, 73.0, 70.3, 55.4, 21.8, 21.5.