Synlett 2019; 30(13): 1580-1584
DOI: 10.1055/s-0037-1610718
letter
© Georg Thieme Verlag Stuttgart · New York

Direct Synthesis of 1-Arylprop-1-ynes with Calcium Carbide as an Acetylene Source

Lei Gao
,
Zheng Li
College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. of China   Email: lizheng@nwnu.edu.cn
› Author Affiliations
The authors thank the National Natural Science Foundation of China (21462038) for the financial support of this work.
Further Information

Publication History

Received: 08 April 2019

Accepted after revision: 27 May 2019

Publication Date:
19 June 2019 (online)


Abstract

A simple method is described for the synthesis of 1-arylprop-1-ynes directly from aromatic aldehyde p-tosylhydrazones by using calcium carbide as an acetylene source. The salient features of this protocol are its use of a readily available and easily handled source of acetylene, its operational simplicity, its high yield, and its broad substrate scope.

Supporting Information

 
  • References and Notes

    • 2a Klappenberger F, Zhang Y.-Q, Björk J, Klyatskaya S, Ruben M, Barth JV. Acc. Chem. Res. 2015; 48: 2140
    • 2b Zheng C, Deng H, Zhao Z, Qin A, Hu R, Tang BZ. Macromolecules 2015; 48: 1941
    • 2c He B, Wu Y, Qin A, Tang BZ. Macromolecules 2017; 50: 5719
    • 3a Sakata N, Sasakura K, Matsushita G, Okamoto K, Ohe K. Org. Lett. 2017; 19: 3422
    • 3b Tejeda-Serrano M, Cabrero-Antonino JR, Mainar-Ruiz V, López-Haro M, Hernández-Garrido JC, Calvino JJ, Leyva-Pérez A, Corma A. ACS Catal. 2017; 7: 3721
    • 3c Fu M.-C, Shang R, Cheng W.-M, Fu Y. ACS Catal. 2016; 6: 2501
    • 3d Ukigai H, Hara S. Tetrahedron Lett. 2016; 57: 1379
    • 3e Jiang Q, Wang J.-Y, Guo C.-C. Synthesis 2015; 47: 2081
    • 3f Murai M, Hatano R, Kitabata S, Ohe K. Chem. Commun. 2011; 47: 2375
    • 3g Kuniyasu H, Yoshizawa T, Kambe N. Tetrahedron Lett. 2010; 51: 6818
    • 3h Barrios-Francisco R, García J. Appl. Catal., A 2010; 385: 108
    • 3i Yoon MY, Kim JH, Choi DS, Shin US, Lee JY, Song CE. Adv. Synth. Catal. 2007; 349: 1725
    • 3j Song CE, Jung D.-U, Choung SY, Roh EJ, Lee S.-g. Angew. Chem. Int. Ed. 2004; 43: 6183
    • 3k Bellina F, Colzi F, Mannina L, Rossi R, Viel S. J. Org. Chem. 2003; 68: 10175
    • 4a Yagyu T, Takemoto Y, Yoshimura A, Zhdankin VV, Saito A. Org. Lett. 2017; 19: 2506
    • 4b Zhu F, Li Y, Wang Z, Wu X.-F. Angew. Chem. Int. Ed. 2016; 55: 14151
    • 4c Hu L, Mück-Lichtenfeld C, Wang T, He G, Gao M, Zhao J. Chem. Eur. J. 2016; 22: 911
    • 4d Saito A, Taniguchi A, Kambara Y, Hanzawa Y. Org. Lett. 2013; 15: 2672
    • 4e Zeng W, Wu W, Jiang H, Huang L, Sun Y, Chen Z, Li X. Chem. Commun. 2013; 49: 6611
    • 4f Li X, Huang L, Chen H, Wu W, Huang H, Jiang H. Chem. Sci. 2012; 3: 3463
    • 4g Stuart DR, Bertrand-Laperle M, Burgess KM. N, Fagnou K. J. Am. Chem. Soc. 2008; 130: 16474
    • 4h Pourzal A.-A. Synthesis 1983; 717
    • 5a Fang X, Zeng Y, Li Q, Wu Z, Yao H, Lin A. Org. Lett. 2018; 20: 2530
    • 5b Lu C.-J, Chen D.-K, Chen H, Wang H, Jin H, Huang X, Gao J. Org. Biomol. Chem. 2017; 15: 5756
    • 5c Berthold D, Breit B. Org. Lett. 2018; 20: 598
    • 5d Gao S, Wu Z, Fang X, Lin A, Yao H. Org. Lett. 2016; 18: 3906
    • 6a Mi C, Li L, Meng X.-G, Yang R.-Q, Liao X.-H. Tetrahedron 2016; 72: 6705
    • 6b Xue J.-W, Zeng M, Hou X, Chen Z, Yin G. Asian J. Org. Chem. 2018; 7: 212
    • 6c Shaik JB, Ramkumar V, Sankararaman S. J. Organomet. Chem. 2018; 860: 1
    • 8a Liu S, Liu H, Zhou H, Liu Q, Lv J. Org. Lett. 2018; 20: 1110
    • 8b Ramachandran PV, Drolet MP. Tetrahedron Lett. 2018; 59: 967
    • 9a Pelter A, Drake RA. Tetrahedron Lett. 1988; 29: 4181
    • 9b Engler TA, Combrink KD, Ray JE. Synth. Commun. 1989; 19: 1735
    • 9c Hurd CD, Tockman A. J. Org. Chem. 1958; 23: 1087
    • 9d Katritzky AR, Wang J, Karodia N, Li J. J. Org. Chem. 1997; 62: 4142
    • 10a Zhang M.-M, Gong J, Song R.-J, Li J.-H. Eur. J. Org. Chem. 2014; 6769
    • 10b Hosoya T, Wakao M, Kondo Y, Doi H, Suzuki M. Org. Biomol. Chem. 2004; 2: 24
    • 10c Ruano JL. G, Alemán J, Marzo L, Alvarado C, Tortosa M, Díaz-Tendero S, Fraile A. Chem. Eur. J. 2012; 18: 8414
    • 10d An D.-L, Zhang Z, Orita A, Mineyama H, Otera J. Synlett 2007; 1909
  • 11 Liu Y.-Y, Yang X.-H, Huang X.-C, Wei W.-T, Song R.-J, Heng J.-H. J. Org. Chem. 2013; 78: 10421
    • 13a Umeda R, Yuasa T, Nishiyama Y. J. Organomet. Chem. 2011; 696: 1916
    • 13b Yang X, Languet K, Thamattoor DM. J. Org. Chem. 2016; 81: 8194
    • 14a Li X, Liu X, Chen H, Wu W, Qi C, Jiang H. Angew. Chem. Int. Ed. 2014; 53: 14485
    • 14b Mao S, Gao Y.-R, Zhu X.-Q, Guo D.-D, Wang Y.-Q. Org. Lett. 2015; 17: 1692
    • 14c Ye F, Wang C, Ma X, Hossain ML, Xia Y, Zhang Y, Wang J. J. Org. Chem. 2015; 80: 647
  • 15 Munteanu C, Frantz DE. Org. Lett. 2016; 18: 3937
  • 16 Dermenci A, Whittaker RE, Gao Y, Cruz FA, Yu Z.-X, Dong G. Chem. Sci. 2015; 6: 3201
    • 17a Zhang W, Wu H, Liu Z, Zhong P, Zhang L, Huang X, Cheng J. Chem. Commun. 2006; 4826
    • 17b Jiang Y, Kuang C, Yang Q. Synlett 2009; 3163
    • 17c Chuentragool P, Vongnam K, Rashatasakhon P, Sukwattanasinitt M, Wacharasindhu S. Tetrahedron 2011; 67: 8177
    • 17d Yang Q, Jiang Y, Kuang C. Helv. Chim. Acta 2012; 95: 448
    • 17e Lin Z, Yu D, Sum YN, Zhang Y. ChemSusChem 2012; 5: 625
    • 17f Yu D, Sum YN, Ean AC. C, Chin MP, Zhang Y. Angew. Chem. Int. Ed. 2013; 52: 5125
    • 17g Sum YN, Yu D, Zhang Y. Green Chem. 2013; 15: 2718
    • 17h Thavornsin N, Sukwattanasinitt M, Wacharasindhu S. Polym. Chem. 2014; 5: 48
    • 17i Hosseini A, Seidel D, Miska A, Schreiner PR. Org. Lett. 2015; 17: 2808
    • 17j Kaewchangwat N, Sukato R, Vchirawongkwin V, Vilaivan T, Sukwattanasinitt M, Wacharasindhu S. Green Chem. 2015; 17: 460
    • 17k Rodygin KS, Ananikov VP. Green Chem. 2016; 18: 482
    • 17l Rodygin KS, Werner G, Kucherov FA, Ananikov VP. Chem. Asian J. 2016; 11: 965
    • 17m Teong SP, Yu D, Sum YN, Zhang Y. Green Chem. 2016; 18: 3499
    • 17n Rattanangkool E, Vilaivan T, Sukwattanasinitt M, Wacharasindhu S. Eur. J. Org. Chem. 2016; 4347
    • 17o Samzadeh-Kermani A. Synlett 2017; 28: 2126
    • 17p Hosseini A, Pilevar A, Hogan E, Mogwitz B, Schulze AS, Schreiner PR. Org. Biomol. Chem. 2017; 15: 6800
    • 17q Werner G, Rodygin KS, Kostin AA, Gordeev EG, Kashin AS, Ananikov VP. Green Chem. 2017; 19: 3032
    • 17r Rodygin KS, Gyrdymova YV, Zarubaev VV. Mendeleev Commun. 2017; 27: 476
    • 17s Turberg M, Ardila-Fierro KJ, Bolm C, Hernández JG. Angew. Chem. Int. Ed. 2018; 57: 10718
    • 17t Voronin VV, Ledovskaya MS, Gordeev EG, Rodygin KS, Ananikov VP. J. Org. Chem. 2018; 83: 3819
    • 17u Van Beek WE, Gadde K, Tehrani KA. Chem. Eur. J. 2018; 24: 16645
    • 17v Rodygin KS, Vikenteva YA, Ananikov VP. ChemSusChem 2019; 12: 1483
  • 18 Song G, Li Z. Eur. J. Org. Chem. 2018; 1326
  • 19 Fu R, Li Z. Eur. J. Org. Chem. 2017; 6648
  • 20 Fu R, Li Z. Org. Lett. 2018; 20: 2342
  • 21 Fu R, Li Z. J. Chem. Res. 2017; 41: 341
  • 22 Li Z, He L, Fu R, Song G, Song W, Xie D, Yang J. Tetrahedron 2016; 72: 4321
  • 23 1-Arylprop-1-ynes (2ax); General Procedure A mixture of the appropriate aromatic aldehyde p-tosylhydrazone (1 mmol), calcium carbide (3 mmol, 0.20 g for 98% purity), t BuOK (2 mmol, 0.22 g), CuI (1.2 mmol, 0.23 g), and H2O (4 mmol, 0.07 mL) in DMF (4 mL) was stirred at 90 °C for 6 h. When the reaction was complete, the mixture was filtered to remove solids and the liquor was extracted with EtOAc (3 × 10 mL) then washed with sat. brine (3 × 10 mL). The resulting organic phase was dried (Na2SO4) and concentrated under reduced pressure. The residue was purified by column chromatography (silica gel, PE). 1-Phenylprop-1-yne (2a) Colorless liquid; yield: 83.6 mg (72%). 1H NMR (600 MHz, CDCl3): δ = 7.39 (dd, J = 7.7, 2.0 Hz, 2 H), 7.30–7.24 (m, 3 H), 2.05 (s, 3 H). 13C NMR (151 MHz, CDCl3): δ = 131.46, 128.17, 127.48, 124.01, 85.76, 79.71, 4.29. HRMS: m/z [M + H]+ calcd for C9H9: 117.0699; found: 117.0698. (2-Prop-1-yn-1-ylphenyl)amine (2h) Brown liquid; yield: 87.1 mg (66%). 1H NMR (600 MHz, CDCl3): δ = 7.24 (d, J = 7.8 Hz, 1 H), 7.10–7.06 (m, 1 H), 6.75 (d, J = 8.1 Hz, 1 H), 6.70 (t, J = 7.5 Hz, 1 H), 2.11 (s, 3 H). 13C NMR (151 MHz, CDCl3): δ = 146.97, 132.01, 128.77, 118.29, 114.52, 109.40, 91.18, 76.06, 4.53. HRMS: m/z [M + H]+ calcd for C9H10N: 132.0808; found: 132.0808.
  • 24 Bamford WR, Stevens TS. J. Chem. Soc. 1952; 4735
    • 25a Hossain ML, Ye F, Zhang Y, Wang J. J. Org. Chem. 2013; 78: 1236
    • 25b Suárez A, Fu GC. Angew. Chem. Int. Ed. 2004; 43: 3580
    • 25c Hassink M, Liu X, Fox JM. Org. Lett. 2011; 13: 2388
  • 26 Xiao Q, Xia Y, Li H, Zhang Y, Wang J. Angew. Chem. Int. Ed. 2011; 50: 1114