Synthesis 2019; 51(11): 2351-2358
DOI: 10.1055/s-0037-1610695
paper
© Georg Thieme Verlag Stuttgart · New York

Synthesis of 2-Fluoroacetoacetic Acid and 4-Fluoro-3-hydroxy­butyric Acid

Stephanie J. Mattingly
a   Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, AB, T6G 1Z2, Canada
b   Department of Oncology, University of Alberta, Medical Isotope Cyclotron Facility, 6820 116th Street, Edmonton, AB, T6H 2V8, Canada
,
Frank Wuest*
a   Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, AB, T6G 1Z2, Canada
c   Faculty of Pharmacy and Pharmaceutical Sciences, 2-35, Medical Sciences Building, University of Alberta, 8613 114th Street, Edmonton, AB, T6G 2H7, Canada   Email: wuest@ualberta.ca   Email: schirrma@ualberta.ca
,
Ralf Schirrmacher*
b   Department of Oncology, University of Alberta, Medical Isotope Cyclotron Facility, 6820 116th Street, Edmonton, AB, T6H 2V8, Canada
c   Faculty of Pharmacy and Pharmaceutical Sciences, 2-35, Medical Sciences Building, University of Alberta, 8613 114th Street, Edmonton, AB, T6G 2H7, Canada   Email: wuest@ualberta.ca   Email: schirrma@ualberta.ca
d   Department of Chemistry, 11227 Saskatchewan Drive, University of Alberta, Edmonton, AB, T6G 2N4, Canada
› Author Affiliations
This work was supported by the Natural Science and Engineering Research Council of Canada (NSERC) and the Dianne and Irving Kipnes Foundation.
Further Information

Publication History

Received: 02 January 2019

Accepted after revision: 29 January 2019

Publication Date:
12 March 2019 (online)


Abstract

The butyric acid scaffold is the base structure of several human metabolites that serve diverse and prominent biochemical roles including as oxidative sources of cellular energy and as substrates for biosynthesis. Derivatization of metabolites through incorporation of fluorine often alters bioactivity and can facilitate detection and analysis by nuclear magnetic resonance or positron emission tomography depending upon the fluorine isotope employed. We describe the synthesis of two new fluorinated butyric acids (and three related esters) that are derivatives of the metabolites acetoacetic acid and 3-hydroxybutyric acid. 4-Fluoro-3-hydroxybutyric acid is prepared from epoxy ester precursors via ring opening by triethylamine trihydrofluoride. 2-Fluoroacetoacetic acid is prepared by electrophilic fluorination of an acid-labile β-keto ester. The gradual pH-dependent decarboxylation of 2-fluoroacetoacetic acid is investigated by 19F NMR spectroscopy.

Supporting Information

 
  • References

  • 1 Park BK, Kitteringham NR, O’Neill PM. Annu. Rev. Pharmacol. Toxicol. 2001; 41: 443
    • 2a Van Hee VF, Grasso D, Sonveaux P, Labar D, Gregoire V, Dehon G, Muccioli GG, Frederick R. Oncotarget 2017; 8: 24415
    • 2b Li C, Liu H, Duan D, Zhou Z, Liu Z. Nucl. Med. Biol. 2018; 64-65: 34
    • 2c Wuest M, Hamann I, Bouvet V, Glubrecht D, Marshall A, Trayner B, Soueidan O.-M, Krys D, Wagner M, Cheeseman C, West F, Wuest F. Mol. Pharmacol. 2018; 93: 79
    • 2d Ko IO, Jung K.-H, Kim MH, Kang KJ, Lee KC, Kim KM, Noh I, Lee YJ, Lim SM, Kim JY, Park J.-A. Contrast Media Mol. Imaging 2017; 3981358/1
    • 2e Pisaneschi F, Witney TH, Iddon L, Aboagye EO. MedChemComm 2013; 4: 1350
    • 3a De Silva A, Wuest M, Wang M, Hummel J, Mossman K, Wuest F, Hitt MM. Am. J. Nucl. Med. Mol. Imaging 2012; 2: 88
    • 3b Hamann I, Krys D, Glubrecht D, Bouvet V, Marshall A, Vos L, Mackey JR, Wuest M, Wuest F. FASEB J. 2018; 32: 5104
    • 3c Krys D, Hamann I, Mattingly S, Wuest M, Wuest F. Membrane Transporters in Breast Cancer and their Importance in PET Imaging . In Membrane Proteins in Health and Disease, 61st Annual Meeting of the Canadian Society for Molecular Biosciences. Banff; Canada: 2018. Poster 53
  • 5 Peroxidases in Chemistry and Biology, Vol. 2. Everse J, Everse KE, Grisham MB. CRC Press; Boca Raton (FL): 1990: 304
  • 6 Bergmann ED, Szinai S. J. Chem. Soc. 1956; 1521
  • 7 Huber DP, Stanek K, Togni A. Tetrahedron: Asymmetry 2006; 17: 658
  • 8 Hay RW, Bond MA. Aust. J. Chem. 1967; 20: 1823
  • 9 Jencks WP. Catalysis in Chemistry and Enzymology - McGraw-Hill Series in Advanced Chemistry. McGraw-Hill; New York: 1969: 644
  • 10 Hanson RW. J. Chem. Educ. 1987; 64: 591
  • 11 Dean JA. Handbook of Organic Chemistry 1987
  • 12 Olah GA, Kuhn SJ. J. Org. Chem. 1961; 26: 225
  • 13 Chen Y, Tian S.-K. Chin. J. Chem. 2013; 31: 37
  • 14 Graham TJ. A, Lambert FR, Ploessl K, Kung HF, Doyle AG. J. Am. Chem. Soc. 2014; 136: 5291
  • 15 Bergmann ED, Cohen S, Shahak I. J. Chem. Soc. 1961; 3448
  • 16 Liu Y, Hazzard C, Eustaquio AS, Reynolds KA, Moore BS. J. Am. Chem. Soc. 2009; 131: 10376
  • 17 Shibatomi K, Kobayashi F, Narayama A, Fujisawa I, Iwasa S. Chem. Commun. 2012; 48: 413
  • 18 Gao Y, Sharpless KB. J. Am. Chem. Soc. 1988; 110: 7538
  • 19 Roemer J, Steinbach J, Kasch H. Appl. Radiat. Isotopes 1996; 47: 395
    • 20a Berridge MS, Franceschini MP, Rosenfeld E, Tewson TJ. J. Org. Chem. 1990; 55: 1211
    • 20b Megia-Fernandez A, Morales-Sanfrutos J, Hernandez-Mateo F, Santoyo-Gonzalez F. Curr. Org. Chem. 2011; 15: 401
  • 21 Griffiths J.-P, Nie H, Brown JR, Day P, Wallis JD. Org. Biomol. Chem. 2005; 3: 2155
  • 22 Saito S, Ishikawa T, Kuroda A, Koga K, Moriwake T. Tetrahedron 1992; 48: 4067
  • 23 Pospisil J, Marko IE. Tetrahedron Lett. 2008; 49: 1523
  • 24 Robinson RI, Woodward S. Tetrahedron Lett. 2003; 44: 1655
  • 25 Seebach D, Imwinkelried R, Stucky G. Angew. Chem. 1986; 98: 182
  • 26 Calvisi G, Catini R, Chiariotti W, Giannessi F, Muck S, Tinti MO, De Angelis F. Synlett 1997; 71
  • 27 Hollingsworth RL. EP513430A1, 1992
  • 28 Chen B, Sun H.-X, Qin J.-F, Wang B. Tetrahedron Lett. 2016; 57: 253
  • 29 Christopher JA, Kocienski PJ, Kuhl A, Bell R. Synlett 2000; 463
  • 30 Cooksey J, Gunn A, Kocienski PJ, Kuhl A, Uppal S, Christopher JA, Bell R. Org. Biomol. Chem. 2004; 2: 1719
  • 31 Pounder RJ, Dove AP. Biomacromolecules 2010; 11: 1930
  • 32 Rachele JR. J. Org. Chem. 1963; 28: 2898
    • 33a Ilangovan A, Anandhan K, Kaushik MP. Tetrahedron Lett. 2015; 56: 1080
    • 33b Alcock SG, Baldwin JE, Bohlmann R, Harwood LM, Seeman JI. J. Org. Chem. 1985; 50: 3526
    • 34a Su Q, Dakin LA, Panek JS. J. Org. Chem. 2007; 72: 2
    • 34b Cook C, Liron F, Guinchard X, Roulland E. J. Org. Chem. 2012; 77: 6728
    • 35a Larcheveque M, Henrot S. Tetrahedron 1990; 46: 4277
    • 35b Faissat L, Martin K, Chavis C, Montero J.-L, Lucas M. Bioorg. Med. Chem. 2003; 11: 325
    • 35c Degenhardt CR. J. Org. Chem. 1980; 45: 2763
    • 36a Proudfoot AT, Bradberry SM, Vale AJ. Toxicol. Rev. 2006; 25: 213
    • 36b Lauble H, Kennedy MC, Emptage MH, Beinert H, Stout CD. Proc. Natl. Acad. Sci. U.S.A. 1996; 93: 13699
  • 37 White JD, Lincoln CM, Yang J, Martin WH. C, Chan DB. J. Org. Chem. 2008; 73: 4139
  • 38 Rao GC. Org. Prep. Proced. Int. 1980; 12: 225
  • 39 Miao B, Ma S. Chem. Commun. 2014; 50: 3285
  • 40 Shah JP, Russo CM, Howard KT, Chisholm JD. Tetrahedron Lett. 2014; 55: 1740
  • 41 Mohr P, Roesslein L, Tamm C. Tetrahedron Lett. 1989; 30: 2513
  • 42 Hoff B, Anthonsen T. Tetrahedron: Asymmetry 1999; 10: 1401
  • 43 Buschmann HJ, Fueldner HH, Knoche W. Ber. Bunsen Ges. Phys. Chem. 1980; 84: 41
  • 44 Abraham RJ, Jones AD, Warne MA, Rittner R, Tormena CF. J. Chem. Soc., Perkin Trans. 2 1996; 533