Subscribe to RSS
DOI: 10.1055/s-0037-1610672
Copper-Catalyzed C(sp3)–H Azidation of 1,3-Dihydro-2H-indol-2-ones Under Mild Conditions
This research is sponsored by the National Natural Science Foundation of China (Grant 21801142), the Natural Science Foundation of Zhejiang Province (No. LQ18B020002), State Key Laboratory of Analytical Chemistry for Life Science (No. SKLACLS1804), the Open Subject of State Key Laboratory of Chemo/Biosensing and Chemometrics (2017016), Education Foundation of Zhejiang Province (No. Y201737123), and the K. C. Wong Magna Fund in Ningbo University.Publication History
Received: 15 August 2018
Accepted after revision: 16 October 2018
Publication Date:
14 November 2018 (online)
◊These authors contributed equally to this work.
Abstract
A simple and economical synthesis of 3-substituted 3-azido-1,3-dihydro-2H-indol-2-ones has been realized under mild conditions through copper-catalyzed C(sp3)–H azidation of the corresponding 1,3-dihydro-2H-indol-2-ones with trimethylsilyl azide. The reaction proceeds by an efficient pathway involving the addition of a N3 radical to the enol tautomer and consecutive C(sp3)−N bond formations. The method is valuable because of its mild reaction conditions, short reaction times, and broad substrate scope, and because of the rich biological activity of the resulting 3-substituted 3-azido-1,3-dihydro-2H-indol-2-one products.
Keywords
copper catalysis - radical reaction - azidoindolinones - indolinones - azidation - trimethylsilyl azideSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-00360037-1610672.
- Supporting Information
-
References and Notes
- 1a Ackermann L. Acc. Chem. Res. 2014; 47: 281
- 1b Chen F, Wang T, Jiao N. Chem. Rev. 2014; 114: 8613
- 1c Liu C, Yuan J, Gao M, Tang S, Li W, Shi R, Lei A. Chem. Rev. 2015; 115: 12138
- 2a Chemler SR, Fuller PH. Chem. Soc. Rev. 2007; 36: 1153
- 2b Sambiagio C, Marsden SP, Blacker AJ, McGowan PC. Chem. Soc. Rev. 2014; 43: 3525
- 2c Zhang C, Tang C, Jiao N. Chem. Soc. Rev. 2012; 41: 3464
- 3a Murakami K, Yamada S, Kaneda T, Itami K. Chem. Rev. 2017; 117: 9302
- 3b Davies HM. L, Morton D. J. Org. Chem. 2016; 81: 343
- 3c Baudoin O. Chem. Soc. Rev. 2011; 40: 4902
- 3d He J, Wasa M, Chan KS. L, Shao Q, Yu J.-Q. Chem. Rev. 2017; 117: 8754
- 4a Zhao H, Chen X, Jiang H, Zhang M. Org. Chem. Front. 2018; 5: 539
- 4b Meng D, Tang Y, Wei J, Shi X, Yang M. Chem. Commun. 2017; 53: 5744
- 4c Gou Q, Yang Y.-W, Liu Z.-N, Qin J. Chem. Eur. J. 2016; 22: 16057
- 4d Li Z, Wu S.-S, Luo Z.-G, Liu W.-K, Feng C.-T, Ma S.-T. J. Org. Chem. 2016; 81: 4386
- 5a Daggupatia RV, Malapaka C. Org. Chem. Front. 2018; 5: 788
- 5b Tran BL, Li B, Driess M, Hartwig JF. J. Am. Chem. Soc. 2014; 136: 2555
- 5c Lao Z.-Q, Zhong W.-H, Lou Q.-H, Li Z.-J, Meng X.-B. Org. Biomol. Chem. 2012; 10: 7869
- 5d Sun B, Wang Y, Li D, Jin C, Su W. Org. Biomol. Chem. 2018; 16: 2902
- 6a Yang Q, Choy P, Fu W, Fan B, Kwong F. J. Org. Chem. 2015; 80: 11193
- 6b Wang C.-S, Wu X.-F, Dixneuf PH, Soulé J.-F. ChemSusChem 2017; 10: 3075
- 7a Huang L, Lin J.-S, Tan B, Liu X.-Y. ACS Catal. 2015; 5: 2826
- 7b Rabet PT. G, Fumagalli G, Boyd S, Greaney MF. Org. Lett. 2016; 18: 1646
- 8a Huang X, Groves JT. ACS Catal. 2016; 6: 751
- 8b Banert K, Berndt C, Hagedorn M, Liu H, Anacker T, Friedrich J, Rauhut G. Angew. Chem. Int. Ed. 2012; 51: 4718
- 8c Yang Y, Song R.-J, Ouyang X.-H, Wang C.-Y, Li J.-H, Luo S. Angew. Chem. Int. Ed. 2017; 56: 7916
- 8d Lubriks D, Sokolovs I, Suna E. J. Am. Chem. Soc. 2012; 134: 15436
- 8e Liu Y.-Y, Yang X.-H, Song R.-J, Luo S, Li J.-H. Nat. Commun. 2017; 8: 14720
- 8f Klahn P, Erhardt H, Kotthaus A, Kirsch SF. Angew. Chem. Int. Ed. 2014; 53: 7913
- 8g Liu C, Wang X, Li Z, Cui L, Li C. J. Am. Chem. Soc. 2015; 137: 9820
- 9a Galliford CV, Scheidt KA. Angew. Chem. Int. Ed. 2007; 46: 8748
- 9b Jensen BS. CNS Drug Rev. 2002; 8: 353
- 9c Lin H, Danishefsky SJ. Angew. Chem. Int. Ed. 2003; 42: 36
- 9d Rottmann M, McNamara C, Yeung BK. S, Lee MC. S, Zou B, Russell B, Seitz P, Plouffe DM, Dharia NV, Tan J, Cohen SB, Spencer KR, González-Páez GE, Lakshminarayana SB, Goh A, Suwanarusk R, Jegla T, Schmitt EK, Beck H.-P, Brun R, Nosten F, Renia L, Dartois V, Keller TH, Fidock DA, Winzeler EA, Diagana TT. Science 2010; 329: 1175
- 9e Yu J.-S, Zhou F, Liu Y.-L, Zhou J. Synlett 2015; 26: 2491
- 10a Deng Q.-H, Bleith T, Wadepohl H, Gade LH. J. Am. Chem. Soc. 2013; 135: 5356
- 10b Chen W.-T, Gao L.-H, Bao W.-H, Wei W.-T. J. Org. Chem. 2018; 83: 11074
- 11 Huang Y.-L, Bao W.-H, Ying W.-W, Chen W.-T, Gao L.-H, Wang X.-Y, Chen G.-P, Ge G.-P, Wei W.-T. Synlett 2018; 29: 1485
- 12 3-Azido-1,3-dihydro-2H-indol-2-ones 3aa–3la; General Procedure A Schlenk tube was charged with the appropriate 1,3-dihydro-2H-indol-2-one 1 (0.3 mmol), TMSN3 (2a; 0.6 mmol), Cu(OAc)2 (0.06 mmol), and MeCN (2 mL). The mixture was then stirred at 40 °C under open air until the starting material was completely consumed (TLC). The solution was then concentrated under reduced pressure, and the mixture was purified by flash column chromatography (silica gel, hexane–EtOAc). 3-Azido-3-phenyl-1,3-dihydro-2H-indol-2-one (3aa) Yellow solid; yield: 66.0 mg (88%); mp 328–330 °C. 1H NMR (400 MHz, DMSO-d 6): δ = 11.04 (s, 1 H), 7.45–7.33 (m, 6 H), 7.27 (d, J = 7.6 Hz, 1 H), 7.08–7.00 (m, 2 H). 13C NMR (100 MHz, DMSO-d 6): δ = 175.0, 142.1, 137.0, 131.0, 129.5, 129.2, 129.0, 126.6, 125.6, 123.2, 111.2, 70.2.
- 13a Liu H, Guo Q, Chen C, Wang M, Xu Z. Org. Chem. Front. 2018; 5: 1522
- 13b Zhou B, Zheng L, Xu Z, Jin H, Wu Q, Li T, Liu Y. ChemistrySelect 2018; 3: 7354
- 13c Ouyang X.-H, Song R.-J, Liu Y, Hu M, Li J.-H. Org. Lett. 2015; 17: 6038
- 14 Zhu W.-M, Bao W.-H, Ying W.-W, Chen W.-T, Huang Y.-L, Ge G.-P, Chen G.-P, Wei W.-T. Asian J. Org. Chem. 2018; 7: 337
For selected reviews, see:
For selected reviews, see:
For selected reviews, see:
For selected papers, see:
For selected papers, see:
For selected papers, see:
For selected reviews and papers, see:
For selected reviews and papers, see: