Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2018; 29(16): 2171-2175
DOI: 10.1055/s-0037-1610551
DOI: 10.1055/s-0037-1610551
cluster
Effect of Regioisomerism on the Efficiency of 1-Phenylpyrrole-Type Atropisomeric Amino Alcohol Ligands in Enantioselective Organometallic Reactions
This work was supported through funding from the National Research, Development and Innovation Office of Hungary (NKFIH) PD129652, K104528 and the Richter Gedeon Talentum Foundation.Further Information
Publication History
Received: 03 May 2018
Accepted after revision: 08 July 2018
Publication Date:
25 July 2018 (online)

Published as part of the Cluster Atropisomerism
Abstract
Syntheses of two regioisomeric series of atropisomeric amino alcohols and a comparative study on their application in the enantioselective addition of diethylzinc to benzaldehyde are reported. Systematic modification of the electronic and steric properties of the functional groups resulted in highly efficient catalyst ligands in both series. Quantum-chemical calculations agreed well with the experimental results of this first systematic comparative study on regioisomeric atropisomeric ligands.
Key words
atropisomerism - amino alcohols - enantioselectivity - asymmetric catalysis - phenylpyrrole - ligandsSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1610551.
- Supporting Information
-
References and Notes
- 1 Mukaiyama T. Soai K. Sato T. Shimizu H. Suzuki K. J. Am. Chem. Soc. 1979; 101: 1455
- 2 Kitamura M. Okada S. Suga S. Noyori R. J. Am. Chem. Soc. 1989; 111: 4028
- 3 Soai K. Niwa S. Chem. Rev. 1992; 92: 833
- 4 Yamakawa M. Noyori R. J. Am. Chem. Soc. 1995; 117: 6327
- 5 Wisman RV. de Vries JG. Deelman B.-J. Heeres HJ. Org. Proc. Res. Dev. 2006; 10: 423
- 6 Pablo O. Guijarro D. Kovács G. Lledós A. Ujaque G. Yus M. Chem. Eur. J. 2012; 18: 1969
- 7 Hansen MC. Heusser CA. Narayan TC. Fong KE. Hara N. Kohn AW. Venning AR. Rheingold AL. Johnson AR. Organometallics 2011; 30: 4616
- 8 Kano T. Ueda M. Maruoka K. J. Am. Chem. Soc. 2008; 130: 3728
- 9 Pizzuti MG. Superchi S. Tetrahedron: Asymmetry 2005; 16: 2263
- 10 Lu G. Kwong FY. Ruan J.-W. Li Y.-M. Chan AS. C. Chem. Eur. J. 2006; 12: 4115
- 11 Ruan J. Lu G. Xu L. Li Y.-M. Chan AS. C. Adv. Synth. Catal. 2008; 350: 76
- 12 Trost BM. Ngai M.-Y. Dong G. Org. Lett. 2011; 13: 1900
- 13 Tarui A. Nishimura H. Ikebata T. Tahira A. Sato K. Omote M. Minami H. Miwa Y. Ando A. Org. Lett. 2014; 16: 2080
- 14 Tarui A. Ikebata T. Sato K. Omote M. Ando A. Org. Biomol. Chem. 2014; 12: 6484
- 15 Kim HY. Shih H.-J. Knabe WE. Oh K. Angew. Chem. Int. Ed. Engl. 2009; 48: 7420
- 16 Subba ReddyK. Solà L. Moyano A. Pericàs MA. Riera A. Synthesis 2000; 165
- 17 Nugent WA. Org. Lett. 2002; 4: 2133
- 18 Jeon S.-J. Chen YK. Walsh PJ. Org. Lett. 2005; 7: 1729
- 19 Superchi S. Giorgio E. Scafato P. Rosini C. Tetrahedron: Asymmetry 2002; 13: 1385
- 20 Faigl F. Mátravölgyi B. Szöllősy A. Czugler M. Tárkányi G. Vékey K. Kubinyi M. Chirality 2012; 24: 532
- 21 Zhang H. Xue F. Mak TC. W. Chan KS. J. Org. Chem. 1996; 61: 8002
- 22 Vyskočil Š. Jaracz S. Smrčina M. Štícha M. Hanuš V. Polášek M. Kočovský P. J. Org. Chem. 1998; 63: 7727
- 23 Bringmann G. Breuning M. Tetrahedron: Asymmetry 1998; 9: 667
- 24 Reinheimer EW. Hickman AJ. Moretti JE. Ouyang X. Kantardjieff KA. Johnson AR. J. Chem. Crystallogr. 2012; 42: 911
- 25 Faigl F. Erdélyi Zs. Deák Sz. Nyerges M. Mátravölgyi B. Tetrahedron Lett. 2014; 55: 6891
- 26 Faigl F. Deák Sz. Erdélyi Zs. Holczbauer T. Czugler M. Nyerges M. Mátravölgyi B. Chirality 2015; 27: 216
- 27 Deák Sz. Mátravölgyi B. Feczku Gy. Erdélyi Zs. Nyerges M. Faigl F. Tetrahedron: Asymmetry 2015; 26: 593
- 28 Mátravölgyi B. Kovács E. Jászay Zs. Thurner A. Deák Sz. Erdélyi Zs. Pham TS. Gönczi K. Sólyom Sz. Tőke L. Faigl F. Period. Polytech., Chem. Eng. 2015; 59: 38, DOI: 10.3311/PPch.7320
- 29 Faigl F. Mátravölgyi B. Holczbauer T. Czugler M. Madarász J. Tetrahedron: Asymmetry 2011; 22: 1879
- 30 Addition of Diethylzinc to Benzaldehyde: General ProcedureThe appropriate ligand (S)-6 or (R)-7 (0.095 mmol, 99% ee) was dissolved in a 1 M solution of Et2Zn in hexane (0.6 mL, 0.6 mmol) under N2, and the mixture was stirred for 1 h at r.t. while the temperature was adjusted to 24 °C or 0 °C. Freshly distilled PhCHO (0.2 mmol) was added and the color of the mixture changed to a distinctive yellow. After stirring for 16 h, the mixture again became colorless, indicating completion of the reaction. The reaction was quenched by addition of sat. aq NH4Cl (5 mL), and the mixture was extracted with toluene (3 × 5 mL). The organic layers were combined, dried (Na2SO4), filtered, and concentrated under reduced pressure. Purification of the residue by column chromatography (silica gel, EtOAc–hexane) gave 1-phenylpropan-1-ol (15) as a colourless oil. 1H NMR (300 MHz, CDCl3): δ = 7.40–7.26 (m, 5 H), 4.60 (t, J = 6.5 Hz, 1 H), 1.93–1.64 (m, 3 H), 0.92 (t, J = 7.4 Hz, 3 H). The ee was determined by GC analysis: Supelco-DEXTM 120 capillary column (0.25 nm/0.25 μm, 30 m), TInj: 250 °C, TDet: 250 °C (FID), N2: 1 mL/min, split: 100:1, oven: 60 °C → 140 °C (10 °C/min). RT : (R)-enantiomer 18.3 min; (S)-enantiomer 18.6 min.
- 31 García-Delgado N. Fontes M. Pericàs MA. Riera A. Verdaguer X. Tetrahedron: Asymmetry 2004; 15: 2085
- 32 Pu L. Yu H.-B. Chem. Rev. 2001; 101: 757
- 33 Frisch MJ. Trucks GW. Schlegel HB. et al. Gaussian 09 . Gaussian, Inc; Wallingford: 2016