Synlett 2018; 29(16): 2093-2107
DOI: 10.1055/s-0037-1610531
account
© Georg Thieme Verlag Stuttgart · New York

Development of Novel C–H Bond Transformations and Their Application to the Synthesis of Organic Functional Molecules

Yoichiro Kuninobu*
Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan   Email: kuninobu@cm.kyushu-u.ac.jp
› Author Affiliations
I am grateful for financial support by JSPS KAKENHI Grant Numbers JP 26288014, JP 16K13946, and JP 17H03016, CREST and ERATO from Japan Science and Technology Agency (JST), Astellas Foundation for Research on Metabolic Disorders, and Yakugaku Shinkoukai.
Further Information

Publication History

Received: 05 June 2018

Accepted after revision: 26 June 2018

Publication Date:
26 July 2018 (online)


Abstract

This personal account summarizes our recent progress in the development of C–H transformations. We achieved ortho-selective C–H borylations and silylations by using Lewis acid–base interaction between two substrates and we achieved meta- and ortho-selective C–H borylations by using hydrogen bonding or Lewis acid–base interaction between a hydrogen donor or Lewis acid unit of a ligand and a functional group of a substrate. Regioselective C–H trifluoromethylations and related reactions of six-membered heteroaromatic compounds were realized at their 2- and 4-positions and at their benzylic positions. In addition, we developed C–H transformations directed towards the synthesis of organic functional materials, such as highly soluble polyimides or π-conjugated molecules containing either heteroatom(s) or a Lewis acid–base interaction.

1 Introduction

2 Regioselective C–H Transformations Controlled by Noncovalent Bond Interactions

2.1 Regioselective C–H Transformations Controlled by Lewis Acid–Base Interaction between Two Substrates

2.2 Regioselective C–H Transformation Controlled by Hydrogen Bonding between Ligand and Substrate

2.3 Regioselective C–H Transformations Controlled by Lewis Acid–Base Interactions between Ligands and Substrates

3 Trifluoromethylation and Related Transformations of Six-Membered Heteroaromatic Compounds

3.1 2-Position-Selective C–H Trifluoromethylation of Six-Membered Heteroaromatic Compounds

3.2 4-Position-Selective C–H Trifluoromethylation of Six-Membered Heteroaromatic Compounds

3.3 Benzyl Position-Selective C–H Trifluoromethylation of Six-Membered Heteroaromatic Compounds

4 C–H Transformations Leading to the Synthesis of Organic Functional Materials

4.1 Heteroatom-Containing π-Conjugated Molecules

4.2 π-Conjugated Molecules Containing a Lewis Acid–Base Interaction

4.3 Soluble Polyimide Derivatives

5 Conclusions

 
  • References


    • For several recent reviews of C–H transformations, see:
    • 1a Ackermann L. Chem. Rev. 2011; 111: 1315
    • 1b McMurray L. O’Hara F. Gaunt MJ. Chem. Soc. Rev. 2011; 40: 1885
    • 1c Kuninobu Y. Takai K. Chem. Rev. 2011; 111: 1938
    • 1d Wencel-Delord J. Dröge T. Liu F. Glorius F. Chem. Soc. Rev. 2011; 40: 4740
    • 1e Baudoin O. Chem. Soc. Rev. 2011; 40: 4902
    • 1f Cho SH. Kim JY. Kwak J. Chang S. Chem. Soc. Rev. 2011; 40: 5068
    • 1g Engle KM. Nei T.-S. Wasa M. Yu J.-Q. Acc. Chem. Res. 2012; 45: 788
    • 1h Arockiam PB. Bruneau C. Dixneuf PH. Chem. Rev. 2012; 112: 5879
    • 1i Li B.-J. Shi Z.-J. Chem. Soc. Rev. 2012; 41: 5588
    • 1j Yamaguchi J. Yamaguchi AD. Itami K. Angew. Chem. Int. Ed. 2012; 51: 8960
    • 1k Kuhl N. Hopkinson MN. Wencel-Delord J. Glorius F. Angew. Chem. Int. Ed. 2012; 51: 10236
    • 1l Wencel-Delord J. Glorius F. Nat. Chem. 2013; 5: 369
    • 1m Rouquet G. Chatani N. Angew. Chem. Int. Ed. 2013; 52: 11726
    • 1n Thirunavukkarasu VS. Kozhushkov SI. Ackermann L. Chem. Commun. 2014; 50: 29
    • 1o Girard SA. Knauber T. Li C.-J. Angew. Chem. Int. Ed. 2014; 53: 74
    • 1p Tani T. Uehara TN. Yamaguchi J. Itami K. Chem. Sci. 2014; 5: 123
    • 1q Zhang X.-S. Chen K. Shi Z.-J. Chem. Sci. 2014; 5: 2146
    • 1r Valyaev DA. Lavigne G. Lugan N. Coord. Chem. Rev. 2016; 308: 191
    • 1s Hu Y. Zhou B. Wang C. Acc. Chem. Res. 2018; 51: 816

      For accounts, see:
    • 2a Kuninobu Y. Takai K. Bull. Chem. Soc. Jpn. 2012; 85: 656
    • 2b Kuninobu Y. Yuki Gosei Kagaku Kyokaishi 2013; 71: 425
    • 3a Kuninobu Y. Iwanaga T. Omura T. Takai K. Angew. Chem. Int. Ed. 2013; 52: 4431
    • 3b Murai M. Omura T. Kuninobu Y. Takai K. Chem. Commun. 2015; 51: 4583
    • 3c Yoshigoe Y. Kuninobu Y. Org. Lett. 2017; 19: 3450
  • 4 Wakaki T. Kanai M. Kuninobu Y. Org. Lett. 2015; 17: 1758
    • 5a Cho J.-Y. Tse MK. Holmes D. Maleczka Jr RE. Smith III MR. Science 2002; 295: 305
    • 5b Ishiyama T. Takagi J. Ishida K. Miyaura N. Anastasi NR. Hartwig JF. J. Am. Chem. Soc. 2002; 124: 390
  • 6 During our investigation, Sawamura and co-workers reported the first example of ortho-selective C–H borylation, see: Kawamorita S. Miyazaki T. Ohmiya H. Iwai T. Sawamura M. J. Am. Chem. Soc. 2011; 133: 19310
  • 7 Kuninobu Y. Ida H. Nishi M. Kanai M. Nat. Chem. 2015; 7: 712
  • 8 Chatani NJ. Yuki Gosei Kagaku Kyokaishi 2013; 71: 406
  • 9 Zhang Y.-H. Shi B.-F. Yu J.-Q. J. Am. Chem. Soc. 2009; 131: 5072
  • 10 Saidi O. Marafie J. Ledger AE. W. Liu PM. Mahon MF. Kociok-Köhn G. Whittlesey MK. Frost CG. J. Am. Chem. Soc. 2011; 133: 19298
  • 11 Hofmann N. Ackermann L. J. Am. Chem. Soc. 2013; 135: 5877
    • 12a Phipps RJ. Gaunt MJ. Science 2009; 323: 1593
    • 12b Duong HA. Gilligan RE. Cooke ML. Phipps RJ. Gaunt MJ. Angew. Chem. Int. Ed. 2011; 50: 463
    • 13a Leow D. Li G. Mei T.-S. Yu J.-Q. Nature 2012; 486: 518
    • 13b Tang R.-Y. Li G. Yu J.-Q. Nature 2014; 507: 215
    • 14a Wang X.-C. Gong W. Fang L.-Z. Zhu R.-Y. Li S. Engle KM. Yu J.-Q. Nature 2015; 519: 334
    • 14b Shi H. Herron AN. Shao Y. Shao Q. Yu J.-Q. Nature 2018; 558: 581
  • 15 Wang P. Verma P. Xia G. Shi J. Qiao JX. Tao S. Cheng PT. W. Poss MA. Farmer ME. Yeung K.-S. Yu J.-Q. Nature 2017; 551: 489
  • 16 Li H.-L. Kuninobu Y. Kanai M. Angew. Chem. Int. Ed. 2017; 56: 1495

    • For recent reviews, see:
    • 17a Usachev BI. J. Fluorine Chem. 2015; 175: 36
    • 17b Meyer F. Chem. Commun. 2016; 52: 3077
    • 18a Oishi M. Kondo H. Amii H. Chem. Commun. 2009; 1909
    • 18b Cho EJ. Senecal TD. Kinzel T. Zhang Y. Watson DA. Buchwald SL. Science 2010; 328: 1679
  • 19 Nishida T. Ida H. Kuninobu Y. Kanai M. Nat. Commun. 2014; 5: 3387
    • 20a Nagib DA. MacMillan DW. C. Nature 2011; 480: 224
    • 20b Chu L. Qing F.-L. J. Am. Chem. Soc. 2012; 134: 1298
    • 21a Ji Y. Brueckl T. Baxter RD. Fujiwara Y. Seiple IB. Su S. Blackmond DG. Baran PS. Proc. Natl. Acad. Sci. U. S. A. 2011; 108: 14411
    • 21b Fujiwara Y. Dixon JA. O’Hara F. Funder ED. Dixon DD. Rodriguez RA. Baxter RD. Herlé B. Sach N. Collins MR. Ishihara Y. Baran PS. Nature 2012; 492: 95
  • 22 Shirai T. Kanai M. Kuninobu Y. Org. Lett. 2018; 20: 1593
  • 23 Nagase M. Kuninobu Y. Kanai M. J. Am. Chem. Soc. 2016; 138: 6103
  • 24 Attard G. Reid MA. H. Yap TA. Raynaud F. Dowsett M. Settatree S. Barrett M. Parker C. Martins V. Folkerd E. Clark J. Cooper CS. Kaye SB. Dearnaley D. Lee G. de Bono JS. J. Clin. Oncol. 2008; 26: 4563
  • 25 Kuninobu Y. Nagase M. Kanai M. Angew. Chem. Int. Ed. 2015; 54: 10263
    • 26a Binkley RW. Ambrose MG. J. Org. Chem. 1983; 48: 1776
    • 26b Chu L. Qing F.-L. Chem. Commun. 2010; 6285
    • 26c Mitsudera H. Li C.-J. Tetrahedron Lett. 2011; 52: 1898

      Papaverin shows smooth muscle-relaxing activity; see:
    • 27a Gross EG. Slaughter DH. J. Pharmacol. Exp. Ther. 1931; 43: 551
    • 27b Klotz U. Vapaatalo H. Naunyn-Schmiedeberg's Arch. Pharmacol. 1974; 284: 373
    • 27c Hayashi S. Toda N. Br. J. Pharmacol. 1977; 60: 35
    • 28a Wencel-Delord J. Glorius F. Nat. Chem. 2013; 5: 369
    • 28b Segawa Y. Maekawa T. Itami K. Angew. Chem. Int. Ed. 2015; 54: 66
  • 29 Kuninobu Y. Sueki S. Synthesis 2015; 47: 3823
  • 30 Kuninobu Y. Seiki T. Kanamaru S. Nishina Y. Takai K. Org. Lett. 2010; 12: 5287
  • 31 Sueki S. Kuninobu Y. Chem. Commun. 2015; 51: 7685
  • 32 Ureshino T. Yoshida T. Kuninobu Y. Takai K. J. Am. Chem. Soc. 2010; 132: 14324
  • 33 Kuninobu Y. Yamauchi K. Tamura N. Seiki T. Takai K. Angew. Chem. Int. Ed. 2013; 52: 1520 ; Corrigendum: Angew. Chem. Int. Ed. 2016, 55, 1948
  • 34 Kuninobu Y. Yoshida T. Takai K. J. Org. Chem. 2011; 76: 7370
  • 35 Saito K. Chikkade PK. Kanai M. Kuninobu Y. Chem. Eur. J. 2015; 21: 8365
  • 36 Just after our report, a similar reaction was described: Okada T. Unoh Y. Satoh T. Miura M. Chem. Lett. 2015; 44: 1598
  • 37 Xiao Q. Meng X. Kanai M. Kuninobu Y. Angew. Chem. Int. Ed. 2014; 53: 3168
    • 38a Ishida N. Narumi M. Murakami M. Org. Lett. 2008; 10: 1279
    • 38b Ishida N. Moriya T. Goya T. Murakami M. J. Org. Chem. 2010; 75: 8709
    • 38c Ishida N. Ikemoto W. Narumi M. Murakami M. Org. Lett. 2011; 13: 3008
    • 38d Ishida N. Narumi M. Murakami M. Helv. Chim. Acta 2012; 95: 2474
    • 38e Hudson Z. Ko S.-B. Yamaguchi S. Wang S. Org. Lett. 2012; 14: 5610
    • 38f Tokoro Y. Yeo H. Tanaka K. Chujo Y. Chem. Commun. 2012; 48: 8541
    • 38g Tokoro Y. Tanaka K. Chujo Y. Org. Lett. 2013; 15: 2366
  • 39 Sueki S. Guo Y. Kanai M. Kuninobu Y. Angew. Chem. Int. Ed. 2013; 52: 11879
    • 40a Russell DA. Connell JW. Fogdall LB. J. Spacecr. Rockets 2002; 39: 833
    • 40b Dever JA. Miller SK. Sechkar EA. Wittberg TN. High Perform. Polym. 2008; 20: 371
    • 41a Nishikawa M. Reznikov Y. West JL. Liq. Cryst. 1999; 26: 575
    • 41b Ling Q.-D. Chang F.-C. Song Y. Zhu C.-X. Liaw D.-J. Chan DS.-H. Kang E.-T. Neoh K.-G. J. Am. Chem. Soc. 2006; 128: 8732
    • 41c You N.-H. Suzuki Y. Yorifuji D. Ando S. Ueda M. Macromolecules 2008; 41: 6361
  • 42 Kuninobu Y. Yuki Gosei Kagaku Kyokaishi 2016; 74: 1058