CC BY-ND-NC 4.0 · Synthesis 2019; 51(05): 1123-1134
DOI: 10.1055/s-0037-1610409
feature
Copyright with the author

Asymmetric Organocatalysis Revisited: Taming Hydrindanes with Jørgensen–Hayashi Catalyst

Yannick Stöckl
,
Wolfgang Frey
,
Johannes Lang
,
Birgit Claasen
,
Angelika Baro
,
Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany   eMail: sabine.laschat@oc.uni-stuttgart.de
› Institutsangaben
Generous financial support by the Ministerium für Wissenschaft, Forschung und Kunst des Landes Baden-Württemberg, the Fonds der Chemischen Industrie, the Deutsche Forschungsgemeinschaft (shared instrumentation grant INST 41/897-1 FUGG for 700 MHz NMR) and the DAAD (DAAD-RISE fellowship for Y.S.) is gratefully acknowledged. J. L. would like to thank support by the state of Baden-Württemberg through bwHPC and the Deutsche Forschungsgemeinschaft through grant no. INST 40/467-1 FUGG (JUSTUS cluster).
Weitere Informationen

Publikationsverlauf

Received: 12. November 2018

Accepted: 15. November 2018

Publikationsdatum:
14. Dezember 2018 (online)


Published as part of the 50 Years SYNTHESIS – Golden Anniversary Issue

Abstract

The organocatalytic Michael reaction of easily available 1-cyclopentene-1-carbaldehyde and 1,3-dicarbonyl compounds led to cyclopentanecarbaldehydes on a gram scale with low catalyst loading (2 mol%) and high enantioselectivity. The synthetic potential of 4-acylhexahydroindenones from intramolecular aldol condensation was demonstrated by Diels–Alder reaction to a tetracyclic derivative with seven stereogenic centers. The diastereofacial preference of the tetracyclic product was confirmed by DFT calculations. The described reaction sequence is characterized by few redox-economic steps and high degree of molecular complexity.

Supporting Information

 
  • References

  • 1 Eder U, Sauer G, Wiechert R. Angew. Chem., Int. Ed. Engl. 1971; 10: 496
  • 2 Hajos ZG, Parrish DR. J. Org. Chem. 1974; 39: 1615

    • For some earlier organocatalysis, see:
    • 3a Knoevenagel E. Ber. Dtsch. Chem. Ges. 1898; 31: 2596
    • 3b Westheimer FH, Cohen H. J. Am. Chem. Soc. 1938; 60: 90

      Reviews:
    • 4a Dalko PI. Comprehensive Enantioselective Organocatalysis . Wiley-VCH; Weinheim: 2013
    • 4b List B. Asymmetric Organocatalysis . Springer; Berlin: 2009

      Selected reviews:
    • 5a Klier L, Tur F, Poulsen PH, Jørgensen KA. Chem. Soc. Rev. 2017; 46: 1080
    • 5b Chauhan P, Mahajan S, Enders D. Acc. Chem. Res. 2017; 50: 2809
    • 5c Donslund BS, Johansen TK, Poulsen PH, Halskov KS, Jørgensen KA. Angew. Chem. Int. Ed. 2015; 54: 13860
    • 5d Hayashi Y. J. Synth. Org. Chem., Jpn. 2014; 72: 1228
    • 5e Jiang H, Albrecht L, Dickmeiss G, Jensen KL, Jørgensen KA. TMS-Prolinol Catalyst in Organocatalysis . In Comprehensive Enantioselective Organocatalysis . Dalko PI. Wiley-VCH; Weinheim: 2013: 33-50
    • 5f Gotoh H, Hayashi Y. Diarylprolinol silyl ethers: development and application as organocatalysts. In Sustainable Catalysis. Dunn PJ. Wiley; Hoboken: 2013: 287-316
    • 5g Jensen KL, Dickmeiss G, Jiang H, Albrecht L, Jørgensen KA. Acc. Chem. Res. 2012; 45: 248
    • 5h Marques-Lopez E, Herrera RP. Curr. Org. Chem. 2011; 15: 2311
    • 5i Lattanzi A. Chem. Commun. 2009; 1452
    • 5j Mielgo A, Palomo C. Chem. Asian J. 2008; 3: 922
    • 5k Liu J, Wang L. Synthesis 2017; 49: 960
    • 5l Marcos V, Alemán J. Chem. Soc. Rev. 2016; 45: 6812

      Reviews:
    • 6a Renzi P, Hioe J, Gschwind RM. Acc. Chem. Res. 2017; 50: 2936
    • 6b Halskov KS, Donslund BS, Paz BM, Jørgensen KA. Acc. Chem. Res. 2016; 49: 974
    • 6c Burés J, Armstrong A, Blackmond DG. Acc. Chem. Res. 2016; 49: 214
    • 6d Moberg C. Angew. Chem. Int. Ed. 2013; 52: 2160

      Selected examples:
    • 7a Erdmann H, An F, Mayer P, Ofial AR, Lakhdar S, Mayr H. J. Am. Chem. Soc. 2014; 136: 14263
    • 7b Schmid MB, Zeitler K, Gschwind RM. Chem. Sci. 2011; 2: 1793
    • 7c Schmid MB, Zeitler K, Gschwind RM. J. Am. Chem. Soc. 2011; 133: 7065
    • 7d Dinér P, Kjærsgaard A, Lie MA, Jørgensen KA. Chem. Eur. J. 2008; 14: 122
    • 7e Lakhdar S, Maji B, Mayr H. Angew. Chem. Int. Ed. 2012; 51: 5739
    • 7f Burés J, Armstrong A, Blackmond DG. J. Am. Chem. Soc. 2011; 133: 8822
    • 7g Burés J, Armstrong A, Blackmond DG. J. Am. Chem. Soc. 2012; 134: 6741
    • 7h Patora-Komisarska K, Benohoud M, Ishikawa H, Seebach D, Hayashi Y. Helv. Chim. Acta 2011; 94: 719
    • 7i Seebach D, Sun X, Sparr C, Ebert M.-O, Schweizer WB, Beck AK. Helv. Chim. Acta 2012; 95: 1064
    • 7j Sahoo G, Rahaman H, Madarász A, Pápai I, Melarto M, Valkonen A, Pihko PM. Angew. Chem. Int. Ed. 2012; 51: 13144
    • 7k Seebach D, Sun X, Ebert M.-O, Schweizer WB, Purkayastha N, Beck AK, Duschmalé J, Wennemers H, Mukaiyama T, Benohoud M, Hayashi Y, Reiher M. Helv. Chim. Acta 2013; 96: 799
    • 8a Lai J, Sayalero S, Ferrali A, Osorio-Planes L, Bravo F, Rodríguez-Escrich C, Pericàs MA. Adv. Synth. Catal. 2018; 360: 2914
    • 8b Szcześniak P, Staszewska-Krajewska O, Furman B, Mlynarski J. Tetrahedron: Asymmetry 2017; 28: 1765
    • 8c Guryev AA, Anokhin MV, Averin AD, Beletskaya IP. Mendeleev Commun. 2016; 26: 469
    • 8d Xia A.-B, Zhang C, Zhang Y.-P, Guo Y.-J, Zhang X.-L, Li Z.-B, Xu D.-Q. Org. Biomol. Chem. 2015; 13: 9593
    • 8e Zheng W, Lu C, Yang G, Chen Z, Nie J. Catal. Commun. 2015; 62: 34
    • 8f Keller M, Perrier A, Linhardt R, Travers L, Wittmann S, Caminade A.-M, Majoral J.-P, Reiser O, Ouali A. Adv. Synth. Catal. 2013; 355: 1748
    • 8g Wang CA, Zhang ZK, Yue T, Sun YL, Wang L, Wang WD, Zhang Y, Liu C, Wang W. Chem. Eur. J. 2012; 18: 6718
    • 8h Mager I, Zeitler K. Org. Lett. 2010; 12: 1480
  • 9 Sata NU, Fusetani N. Tetrahedron Lett. 2000; 41: 489
  • 10 Jomon K, Kuroda Y, Ajisaka M, Sakai H. J. Antibiot. 1972; 25: 271
  • 11 Kim WS, Du K, Eastman A, Hughes RP, Micalizio GC. Nat. Chem. 2018; 10: 70
  • 12 Recent review: Eddy NA, Ichalkaranje P. Molecules 2016; 21: 1358
  • 13 Evans DA, Miller SJ, Lectka T. J. Am. Chem. Soc. 1993; 115: 6460
  • 14 Uenishi J, Kawahama R, Yonemitsu O. J. Org. Chem. 1997; 62: 1691
    • 15a Krebs M, Kalinowski M, Frey W, Claasen B, Baro A, Schobert R, Laschat S. Tetrahedron 2013; 69: 7373
    • 15b Evans DA, Johnson JS. J. Org. Chem. 1997; 62: 786
  • 16 Vosburg DA, Vanderwal CD, Sorenson EJ. J. Am. Chem. Soc. 2002; 124: 4552
  • 17 Shiina J, Nishiyama S. Tetrahedron Lett. 2004; 45: 9033
  • 18 Abd El-Gaber MK, Yasuda S, Iida E, Mukai C. Org. Lett. 2017; 19: 320
  • 19 Clive DL. J, Sunasee R. Org. Lett. 2007; 9: 2677
    • 20a Wai HT, Du K, Anesini J, Kim WS, Eastman A, Micalizio GC. Org. Lett. 2018; 20: 6220
    • 20b Krebs M, Laschat S. ARKIVOC 2012; (iii): 5
    • 21a Taber DF, Malcolm SC. J. Org. Chem. 2001; 66: 944
    • 21b Pietrusiewicz KM, Monkiewicz J, Bodalski R. J. Org. Chem. 1983; 48: 788
  • 22 Wilson JE, Sun J, Fu GC. Angew. Chem. Int. Ed. 2010; 49: 161
  • 23 Wang Y, Jaunet A, Geoffroy P, Miesch M. Org. Lett. 2013; 15: 6198
  • 24 Ressault B, Jaunet A, Geoffroy P, Goudedranche S, Miesch M. Org. Lett. 2012; 14: 366
  • 25 Minger TL, Phillips AJ. Tetrahedron Lett. 2002; 43: 5357
  • 26 Holtsclaw J, Koreeda M. Org. Lett. 2004; 6. 3719
  • 27 Pfeiffer MW. B, Phillips AJ. J. Am. Chem. Soc. 2005; 127: 5334
    • 28a Schramm MP, Reddy DS, Kozmin SA. Angew. Chem. Int. Ed. 2001; 40: 4274
    • 28b Mézailles N, Ricard L, Gagosz F. Org. Lett. 2005; 7: 4133
  • 29 Mostafa MA. B, Grafton MW, Wilson C, Sutherland A. Org. Biomol. Chem. 2016; 14: 3284
  • 30 List B, Hoang L, Martin HJ. Proc. Natl. Acad. Sci. U S A 2004; 101: 5839
  • 31 Fonseca MT. H, List B. Angew. Chem. Int. Ed. 2004; 43: 3958
  • 32 Yang J.-D, Kim M.-S, Lee M, Baik W, Koo S. Synthesis 2000; 801
  • 33 Yamaguchi M, Yokota N, Minami T. J. Chem. Soc., Chem. Commun. 1991; 1088
    • 34a Bernardi L, Fochi M, Carbone R, Martinelli A, Fox ME, Cobley CJ, Kandagatla B, Oruganti S, Dahanukar VH, Carlone A. Chem. Eur. J. 2015; 21: 19208

    • For related work, see:
    • 34b Ref. 32.
    • 34c Ref. 33.
    • 34d Ref. 35.
    • 34e Ref. 51.
  • 35 Breistein P, Karlsson S, Hedenström E. Tetrahedron: Asymmetry 2006; 17: 107
  • 36 Pou A, Moyano A. Eur. J. Org. Chem. 2013; 3103
  • 37 Du H, Dudognon Y, Sanchez Duque M.del Mar, Goudedranche S, Bonne D, Rodriguez J, Bugaut X, Constantieux T. Synthesis 2016; 48: 3479
  • 38 Guevara-Pulido JO, Andrés JM, Ávila DP, Pedrosa R. RSC Adv. 2016; 6: 30166
  • 39 Meyer D, Renaud P. Angew. Chem. Int. Ed. 2017; 56: 10858
  • 40 Beck TM, Breit B. Org. Lett. 2016; 18: 124
  • 41 Singh V, Madapa S, Batra S. Synth. Commun. 2008; 38: 2113
  • 42 Fesenko AA, Shutalev AD. Tetrahedron 2015; 71: 9528
  • 43 Singh V, Batra S. Synthesis 2006; 63
  • 44 Peerzada MN, Khan P, Ahmad K, Hassan MI, Azam A. Eur. J. Med. Chem. 2018; 155: 13
  • 45 Waidmann CR, Pierpont AW, Batista ER, Gordon JC, Martin RL, Pete Silks LA, West RM, Wu R. Catal. Sci. Technol. 2013; 3: 106
  • 46 Wang ZS, Chen LZ, Zhou HP, Liu XH, Chen FH. Bioorg. Med. Chem. Lett. 2017; 27: 1803
    • 47a CCDC 1878438 contains supplementary crystallographic data for the structure (3aR,4R,7aS)-9a. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
    • 47b Formula C11H14O2; size 0.570 × 0.104 × 0.096 mm; crystal system: orthorhombic; space group: P2(1)2(1)2(1); unit cell dimensions: a 5.3640(4) Å, b 8.0159(6) Å, c 22.3538(14) Å; α = β = γ = 90°.
  • 48 Ordóñez M, Guerrero de la Rosa V, Alcudia F, Llera JM. Tetrahedron 2004; 60: 871
  • 49 Kobayashi Y, Kiyotsuka Y. Tetrahedron Lett. 2001; 42: 9229
    • 50a Smithen DA, Forrester AM, Corkery DP, Dellaire G, Colpitts J, McFarland SA, Berman JN, Thompson A. Org. Biomol. Chem. 2012; 11: 62
    • 50b Yuasa Y, Kato Y. Org. Process Res. Dev. 2002; 6: 628
    • 50c Kenny M, Christensen J, Coles SJ, Franckevičius V. Org. Lett. 2015; 17: 3926
  • 51 Riaño I, Uria U, Carrillo L, Reyes E, Vicario JL. Org. Chem. Front. 2015; 2: 206
    • 52a Skrzyńska A, Romaniszyn M, Pomikło D, Albrecht Ł. J. Org. Chem. 2018; 83: 5019
    • 52b Karageorgis G, Waldmann H. Synthesis 2018; 50: in press doi: 10.1055/s-0037-1610368
    • 53a Bañuelos P, García JM, Gómez-Bengoa E, Herrero A, Odriozola JM, Oiarbide M, Palomo C, Razkin J. J. Org. Chem. 2010; 75: 1458
    • 53b Palomo C, Oiarbide M, García JM, González A, Lecumberri A, Linden A. J. Am. Chem. Soc. 2002; 124: 10288
    • 54a Miehlich B, Savin A, Stoll H, Preuss H. Chem. Phys. Lett. 1989; 157: 200
    • 54b Becke AD. J. Chem. Phys. 1993; 98: 5648
  • 55 Dunning TH. J. Chem. Phys. 1989; 90: 1007
  • 56 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA. Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ. Gaussian 16, Revision B.01 . Gaussian, Inc; Wallingford CT: 2016