Subscribe to RSS
DOI: 10.1055/s-0037-1610329
Acyl Radical Chemistry via Visible-Light Photoredox Catalysis
We thank the National Institute of General Medical Sciences (R35GM119652) for supporting our research.Publication History
Received: 31 August 2018
Accepted after revision: 19 October 2018
Publication Date:
12 December 2018 (online)
‡ These authors contributed equally to this work.
Abstract
Visible-light photoredox catalysis enables easy access to acyl radicals under mild reaction conditions. Reactive acyl radicals, generated from various acyl precursors such as aldehydes, α-keto acids, carboxylic acids, anhydrides, acyl thioesters, acyl chlorides, or acyl silanes, can undergo a diverse range of synthetically useful transformations, which were previously difficult or inaccessible. This review summarizes the recent progress on visible-light-driven acyl radical generation using transition-metal photoredox catalysts, metallaphotocatalysts, hypervalent iodine catalysts or organic photocatalysts.
1 Introduction
2 The Scope of This Review
3 Aldehydes as a Source of Acyl Radicals
4 α-Keto Acids as a Source of Acyl Radicals
5 Carboxylic Acids as a Source of Acyl Radicals
6 Anhydrides as a Source of Acyl Radicals
7 Acyl Thioesters as a Source of Acyl Radicals
8 Acyl Chlorides as a Source of Acyl Radicals
9 Acyl Silanes as a Source of Acyl Radicals
10 Conclusions and Future Outlook
-
References
- 1 Caronna T, Fronza G, Minisci F, Porta O, Gardini GP. J. Chem. Soc., Perkin Trans. 2 1972; 1477
- 2a Bugaut X, Glorius F. Chem. Soc. Rev. 2012; 41: 3511
- 2b Enders D, Niemeier O, Henseler A. Chem. Rev. 2007; 107: 5606
- 2c Stetter H, Kuhlmann H. Org. React. 2004; 40: 407
- 3 Duncton MA. J. Med. Chem. Commun. 2011; 2: 1135
- 4a Boger DL, Mathvink RJ. J. Org. Chem. 1992; 57: 1429
- 4b Chatgilialoglu C, Crich D, Komatsu M, Ryu I. Chem. Rev. 1999; 99: 1991
- 5a Liu W, Li Y, Liu K, Li Z. J. Am. Chem. Soc. 2011; 133: 10756
- 5b Benati L, Calestani G, Leardini R, Minozzi M, Nanni D, Spagnolo P, Strazzari S. Org. Lett. 2003; 5: 1313
- 5c Bath S, Laso NM, Lopez-Ruiz H, Quiclet-Sire B, Zard SZ. Chem. Commun. 2003; 204
- 6 Boger DL, Mathvink RJ. J. Org. Chem. 1989; 54: 1777
- 7a Chen C, Crich D, Papadatos A. J. Am. Chem. Soc. 1992; 114: 8313
- 7b Crich D, Chen C, Hwang J.-T, Yuan H, Papadatos A, Walter RI. J. Am. Chem. Soc. 1994; 116: 8937
- 8a Colley CS, Grills DC, Besley NA, Jockusch S, Matousek P, Parker AW, Towrie M, Turro NJ, Gill PM. W, George MW. J. Am. Chem. Soc. 2002; 124: 14952
- 8b Hristova D, Gatlik I, Rist G, Dietliker K, Wolf J.-P, Birbaum J.-L, Savitsky A, Moebius K, Gescheidt G. Macromolecules 2005; 38: 7714
- 8c Sluggett GW, Turro C, George MW, Koptyug IV, Turro NJ. J. Am. Chem. Soc. 1995; 117: 5148
- 9 Yagci Y, Pappas SP, Schnabel W. Z. Naturforsch., A: Phys. Sci. 1987; 42: 1425
- 10a Brown CE, Neville AG, Rayner DM, Ingold KU, Lusztyk J. Aust. J. Chem. 1995; 48: 363
- 10b McGimpsey WG, Scaiano JC. J. Am. Chem. Soc. 1987; 109: 2179
- 10c Neville AG, Brown CE, Rayner DM, Lusztyk J, Ingold KU. J. Am. Chem. Soc. 1991; 113: 1869
- 10d Davies AG, Sutcliffe R. J. Chem. Soc., Perkin Trans. 2 1980; 819
- 11a Rosenthal I, Mossoba MM, Riesz P. Can. J. Chem. 1982; 60: 1486
- 11b Miranda MA, Galindo F. Photo-Fries Reaction and Related Processes . In CRC Handbook of Organic Photochemistry and Photobiology . Horspool W, Lenci F. CRC Press; Boca Raton: 2004: 42-1
- 12a Coveney DJ, Patel VF, Pattenden G. Tetrahedron Lett. 1987; 28: 5949
- 12b Coveney DJ, Patel VF, Pattenden G, Thompson DM. J. Chem. Soc., Perkin Trans. 1 1990; 2721
- 13a Wang H, Guo L.-N, Duan X.-H. Adv. Synth. Catal. 2013; 355: 2222
- 13b Chaubey NR, Singh KN. Tetrahedron Lett. 2017; 58: 2347
- 13c Meng M, Wang G, Yang L, Cheng K, Qi C. Adv. Synth. Catal. 2018; 360: 1218
- 14 Wu X.-F. Chem. Eur. J. 2015; 21: 12252
- 15a Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
- 15b Skubi KL, Blum TR, Yoon TP. Chem. Rev. 2016; 116: 10035
- 15c Shaw MH, Twilton J, MacMillan DW. C. J. Org. Chem. 2016; 81: 6898
- 15d Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
- 15e Karkas MD, Porco JA, Stephenson CR. J. Chem. Rev. 2016; 116: 9683
- 15f Douglas JJ, Sevrin MJ, Stephenson CR. J. Org. Process Res. Dev. 2016; 20: 1134
- 15g Twilton J, Le C, Zhang P, Shaw MH, Evans RW, MacMillan DW. C. Nat. Rev. Chem. 2017; 1: 0052
- 16 Xiao W.-J, Zhou Q.-Q, Zou Y.-Q, Lu L.-Q. Angew. Chem. Int. Ed. 2018;
- 17 Luca C, Davide R. Eur. J. Org. Chem. 2017; 2056
- 18 Shi Z, Glorius F. Chem. Sci. 2013; 4: 829
- 19 Jhuang H.-S, Reddy DM, Chen T.-H, Lee C.-F. Asian J. Org. Chem. 2016; 5: 1452
- 20 Jeffrey JL, Terrett JA, MacMillan DW. C. Science 2015; 349: 1532
- 21 Fan XZ, Rong JW, Wu HL, Zhou Q, Deng HP, Tan JD, Xue CW, Wu LZ, Tao HR, Wu J. Angew. Chem. Int. Ed. 2018; 57: 8514
- 22a Shum LG, Benson SW. Int. J. Chem. Kinet. 1983; 15: 433
- 22b Simoes JM, Griller D. Chem. Phys. Lett. 1989; 158: 175
- 22c Berkowitz J, Ellison GB, Gutman D. J. Phys. Chem. 1994; 98: 2744
- 22d Bordwell FG, Satish A. J. Am. Chem. Soc. 1994; 116: 8885
- 22e Bordwell FG, Liu W.-Z. J. Am. Chem. Soc. 1996; 118: 10819
- 22f Lund H, Daasbjerg K, Ochiallini D, Pedersen S. Russian Journal of Electrochemistry 1995; 31: 865-72
- 22g Liu W.-Z, Bordwell FG. J. Org. Chem. 1996; 61: 4778
- 22h Atkinson R, Baulch D, Cox RA, Hampson RF. Jr, Kerr JA, Rossi MJ, Troe J. J. Phys. Chem. Ref. Data 2000; 29: 167
- 22i Ervin KM, DeTuri VF. J. Phys. Chem. A 2002; 106: 9947
- 22j Luo Y.-R. Handbook of Bond Dissociation Energies in Organic Compounds. CRC Press; Boca Raton: 2002
- 23 Iqbal N, Choi S, You Y, Cho EJ. Tetrahedron Lett. 2013; 54: 6222
- 24 Teegardin K, Day JI, Chan J, Weaver J. Org. Process Res. Dev. 2016; 20: 1156
- 25 Cheng P, Qing Z, Liu S, Liu W, Xie H, Zeng J. Tetrahedron Lett. 2014; 55: 6647
- 26 White HS, Bard AJ. J. Am. Chem. Soc. 1982; 104: 6891
- 27 Natascia T, Ulrich N, Alfons B, Jozef P, Ive H. Chem. Eur. J. 2010; 16: 13226
- 28 Li J, Wang DZ. Org. Lett. 2015; 17: 5260
- 29 Jung S, Kim J, Hong S. Adv. Synth. Catal. 2017; 359: 3945
- 30 Iqbal N, Cho EJ. J. Org. Chem. 2016; 81: 1905
- 31 Mukherjee S, Garza-Sanchez RA, Tlahuext-Aca A, Glorius F. Angew. Chem. Int. Ed. 2017; 56: 14723
- 32 Choi GJ, Zhu Q, Miller DC, Gu CJ, Knowles RR. Nature 2016; 539: 268
- 33 Zhang X, MacMillan DW. C. J. Am. Chem. Soc. 2017; 139: 11353
- 34 Shaw MH, Shurtleff VW, Terrett JA, Cuthbertson JD, MacMillan DW. C. Science 2016; 352: 1304
- 35 Vu MD, Das M, Liu XW. Chem. Eur. J. 2017; 23: 15899
- 36 Kawaai K, Yamaguchi T, Yamaguchi E, Endo S, Tada N, Ikari A, Itoh A. J. Org. Chem. 2018; 83: 1988
- 37 Allen NS, Hurley JP, Bannister D, Follows GW, Navaratnam S, Parsons BJ. J. Photochem. Photobiol., A 1992; 68: 213
- 38 Majek M, Filace F, von Wangelin AJ. Beilstein J. Org. Chem. 2014; 10: 981
- 39 We used benzaldehyde as the hydrogen donor to illustrate the mechanism.
- 40 de Souza GF, Bonacin JA, Salles AG. Jr. J. Org. Chem. 2018; 83: 8331
- 41 Furman OS, Teel AL, Watts RJ. Environ. Sci. Technol. 2010; 44: 6423
- 42a Tanielian C, Mechin R. J. Photochem. Photobiol., A 1997; 107: 291
- 42b Erickson PR, Walpen N, Guerard JJ, Eustis SN, Arey JS, McNeill K. J. Phys. Chem. A 2015; 119: 3233
- 43 Liu J, Liu Q, Yi H, Qin C, Bai R, Qi X, Lan Y, Lei A. Angew. Chem. Int. Ed. 2014; 53: 502
- 44 Young RC, Meyer TJ, Whitten DG. J. Am. Chem. Soc. 1976; 98: 286
- 45 Chu L, Lipshultz JM, MacMillan DW. C. Angew. Chem. Int. Ed. 2015; 54: 7929
- 46 Lowry MS, Goldsmith JI, Slinker JD, Rohl R, Pascal RA, Malliaras GG, Bernhard S. Chem. Mater. 2005; 17: 5712
- 47a Tsuji J, Yamada T, Minami I, Yuhara M, Nisar M, Shimizu I. J. Org. Chem. 1987; 52: 2988
- 47b Gooßen LJ, Zimmermann B, Knauber T. Angew. Chem. Int. Ed. 2008; 47: 7103
- 47c Shang R, Yang Z.-W, Wang Y, Zhang S.-L, Liu L. J. Am. Chem. Soc. 2010; 132: 14391
- 47d Weaver JD, Ka BJ, Morris DK, Thompson W, Tunge JA. J. Am. Chem. Soc. 2010; 132: 12179
- 47e Gooßen LJ, Lange PP, Rodriguez N, Linder C. Chem. Eur. J. 2010; 16: 3906
- 47f Wang C, Rakshit S, Glorius F. J. Am. Chem. Soc. 2010; 132: 14006
- 47g Shang R, Ji D.-S, Chu L, Fu Y, Liu L. Angew. Chem. Int. Ed. 2011; 50: 4470
- 47h Hu P, Zhang M, Jie X, Su W. Angew. Chem. Int. Ed. 2012; 51: 227
- 47i Fromm A, van Wuellen C, Hackenberger D, Gooßen LJ. J. Am. Chem. Soc. 2014; 136: 10007
- 48 Gooßen LJ, Rudolphi F, Oppel C, Rodriguez N. Angew. Chem. Int. Ed. 2008; 47: 3043
- 49 Cheng W.-M, Shang R, Yu H.-Z, Fu Y. Chem. Eur. J. 2015; 21: 13191
- 50 Zhou C, Li P, Zhu X, Wang L. Org. Lett. 2015; 17: 6198
- 51 Xu N, Li P, Xie Z, Wang L. Chem. Eur. J. 2016; 22: 2236
- 52 Wang G.-Z, Shang R, Cheng W.-M, Fu Y. Org. Lett. 2015; 17: 4830
- 53 Zhang M, Xi J, Ruzi R, Li N, Wu Z, Li W, Zhu C. J. Org. Chem. 2017; 82: 9305
- 54a Jamison CR, Overman LE. Acc. Chem. Res. 2016; 49: 1578
- 54b Slutskyy Y, Overman LE. Org. Lett. 2016; 18: 2564
- 55 Petersen WF, Taylor RJ. K, Donald JR. Org. Lett. 2017; 19: 874
- 56 Flamigni L, Barbieri A, Sabatini C, Ventura B, Barigelletti F. Top. Curr. Chem. 2007; 281: 143
- 57 Bai Q.-F, Jin C, He J.-Y, Feng G. Org. Lett. 2018; 20: 2172
- 58 Huang H, Zhang G, Chen Y. Angew. Chem. Int. Ed. 2015; 54: 7872
- 59 Tan H, Li H, Ji W, Wang L. Angew. Chem. Int. Ed. 2015; 54: 8374
- 60 Ji W, Tan H, Wang M, Li P, Wang L. Chem. Commun. 2016; 52: 1462
- 61 Roth HG, Romero NA, Nicewicz DA. Synlett 2016; 27: 714
- 62 Bergonzini G, Cassani C, Wallentin C.-J. Angew. Chem. Int. Ed. 2015; 54: 14066
- 63 Zhou Q.-Q, Guo W, Ding W, Wu X, Chen X, Lu L.-Q, Xiao W.-J. Angew. Chem. Int. Ed. 2015; 54: 11196
- 64 Candish L, Freitag M, Gensch T, Glorius F. Chem. Sci. 2017; 8: 3618
- 65 Chateauneuf J, Lusztyk J, Ingold KU. J. Am. Chem. Soc. 1988; 110: 2886
- 66 Pettersson F, Bergonzini G, Cassani C, Wallentin C.-J. Chem. Eur. J. 2017; 23: 7444
- 67 Zhang M, Ruzi R, Xi J, Li N, Wu Z, Li W, Yu S, Zhu C. Org. Lett. 2017; 19: 3430
- 68 Zhang M, Li N, Tao X, Ruzi R, Yu S, Zhu C. Chem. Commun. 2017; 53: 10228
- 69 Ruzi R, Zhang M, Ablajan K, Zhu C. J. Org. Chem. 2017; 82: 12834
- 70 Zhang M, Xie J, Zhu C. Nat. Commun. 2018; 9: 3517
- 71 Pandey G, Pooranchand D, Bhalerao UT. Tetrahedron 1991; 47: 1745
- 72 Stache EE, Ertel AB, Rovis T, Doyle AG. ACS Catal. 2018; 8: 11134
- 73 Bergonzini G, Cassani C, Lorimer-Olsson H, Hoerberg J, Wallentin C.-J. Chem. Eur. J. 2016; 22: 3292
- 74 Dong S, Wu G, Yuan X, Zou C, Ye J. Org. Chem. Front. 2017; 4: 2230
- 75 Zhu X.-Q, Li H.-R, Li Q, Ai T, Lu J.-Y, Yang Y, Cheng J.-P. Chem. Eur. J. 2003; 9: 871
- 76 Ociepa M, Baka O, Narodowiec J, Gryko D. Adv. Synth. Catal. 2017; 359: 3560
- 77 Norman AR, Yousif MN, McErlean C. Org. Chem. Front. 2018; 5: 3267
- 78 Crich D, Yao Q. J. Org. Chem. 1996; 61: 3566
- 79 Fry AJ, Krieger RL. J. Org. Chem. 1976; 41: 54
- 80 van der Kerk GJ. M, Noltes JG, Luijten JG. A. J. Appl. Chem. 1957; 7: 356
- 81 Kuivila HG. J. Org. Chem. 1960; 25: 284
- 82 Kuivila HG, Walsh EJ. Jr. J. Am. Chem. Soc. 1966; 88: 571
- 83a Girard P, Couffignal R, Kagan HB. Tetrahedron Lett. 1981; 22: 3959
- 83b Souppe J, Namy JL, Kagan HB. Tetrahedron Lett. 1984; 25: 2869
- 84a Li C.-G, Xu G.-Q, Xu P.-F. Org. Lett. 2017; 19: 512
- 84b Xu S.-M, Chen J.-Q, Liu D, Bao Y, Liang Y.-M, Xu P.-F. Org. Chem. Front. 2017; 4: 1331
- 84c Liu Y, Wang Q.-L, Zhou C.-S, Xiong B.-Q, Zhang P.-L, Yang C.-a, Tang K.-W. J. Org. Chem. 2018; 83: 2210
- 84d Wang CM, Song D, Xia PJ, Wang J, Xiang HY, Yang H. Chem. Asian. J. 2018; 13: 271
- 85 Liu Y, Wang Q.-L, Zhou C.-S, Xiong B.-Q, Zhang P.-L, Kang S.-J, Yang C.-A, Tang K.-W. Tetrahedron Lett. 2018; 59: 2038
- 86 Mi X, Wang C, Huang M, Wu Y, Wu Y. J. Org. Chem. 2015; 80: 148
- 87 Yan K, Yang D, Wei W, Wang F, Shuai Y, Li Q, Wang H. J. Org. Chem. 2015; 80: 1550
- 88 Brook AG. J. Am. Chem. Soc. 1957; 79: 4373
- 89a Page PC. B, Klair SS, Rosenthal S. Chem. Soc. Rev. 1990; 19: 147
- 89b Zhang H.-J, Priebbenow DL, Bolm C. Chem. Soc. Rev. 2013; 42: 8540
- 90a Brook AG, Duff JM. J. Am. Chem. Soc. 1969; 91: 2118
- 90b Brook AG, Dillon PJ, Pearce R. Can. J. Chem. 1971; 49: 133
- 91a Kunio M, Shuko O, Kyoko I, Osamu K, Tohru T, Keiji Y. Chem. Lett. 1986; 15: 805
- 91b Yoshida J.-i, Matsunaga S.-i, Isoe S. Tetrahedron Lett. 1989; 30: 5293
- 91c Yoshida J, Itoh M, Matsunaga S, Isoe S. J. Org. Chem. 1992; 57: 4877
- 92 Capaldo L, Riccardi R, Ravelli D, Fagnoni M. ACS Catal. 2017; 8: 304
- 93 Rillema DP, Allen G, Meyer TJ, Conrad D. Inorg. Chem. 1983; 22: 1617
- 94 Waele VD, Poizat O, Fagnoni M, Bagno A, Ravelli D. ACS Catal. 2016; 6: 7174
- 95 Tsudaka T, Kotani H, Ohkubo K, Nakagawa T, Tkachenko NV, Lemmetyinen H, Fukuzumi S. Chem. Eur. J. 2017; 23: 1306
- 96 Ravelli D, Protti S, Fagnoni M. Acc. Chem. Res. 2016; 49: 2232