Synthesis 2019; 51(04): 944-952
DOI: 10.1055/s-0037-1610307
paper
© Georg Thieme Verlag Stuttgart · New York

Hafnium Triflate as a Highly Potent Catalyst for Regio- and Chemoselective­ Deprotection of Silyl Ethers

Xiu-An Zheng
,
Rui Kong
,
Hua-Shan Huang
,
Jing-Ying Wei
,
Ji-Zong Chen
,
Shan-Shan Gong*
Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, 605 Fenglin Avenue, Nanchang, Jiangxi 330013, P. R. of China   eMail: gongshanshan@jxstnu.edu.cn   eMail: sunqi@jxstnu.edu.cn
,
Qi Sun  *
Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, 605 Fenglin Avenue, Nanchang, Jiangxi 330013, P. R. of China   eMail: gongshanshan@jxstnu.edu.cn   eMail: sunqi@jxstnu.edu.cn
› Institutsangaben

This work was supported by the National Natural Science Foundation of China (21562021), the Natural Science Foundation (20143ACB21014), the Fellowship for Young Scientists program (2015BCB23009), and the Sci & Tech Project of the Department of Education (GJJ160763) of Jiangxi Province.
Weitere Informationen

Publikationsverlauf

Received: 15. August 2018

Accepted after revision: 21. September 2018

Publikationsdatum:
17. Oktober 2018 (online)


Abstract

As a Group IVB transition metal Lewis acid, hafnium triflate [Hf(OTf)4] exhibited exceptionally high potency in desilylations. Since the amounts of Hf(OTf)4 required for the deprotection of 1°, 2°, 3° alkyl and aryl tert-butyldimethylsilyl (TBS) ethers are significantly different, ranging from 0.05 mol% to 3 mol%, regioselective deprotection of TBS could be easily implemented. Moreover, chemoselective cleavage of different silyl ethers or removal of TBS in the presence of most hydroxyl protecting groups was also accomplished. NMR analyses of silyl products from TBS deprotection indicated that Hf(OTf)4-catalyzed desilylation may proceed via different mechanisms, depending on the solvent used.

Supporting Information

 
  • References

  • 1 Greene TW. Wuts PG. M. Protective Groups in Organic Synthesis . Wiley; New York: 1999. 3rd ed.
  • 2 Kocieński PJ. Protecting Groups . Thieme; Stuttgart: 2005. 3rd ed.
  • 3 Crouch RD. Tetrahedron 2013; 69: 2383 ; and references cited therein
  • 4 Oriyama T. Kobayashi Y. Noda K. Synlett 1998; 1047
  • 5 Yadav JS. Reddy BV. S. Madan C. New J. Chem. 2000; 24: 853
  • 6 Bartoli G. Cupone G. Dalpozzo R. Nino AD. Maiuolo L. Procopio A. Sambri L. Tagarelli A. Tetrahedron Lett. 2002; 43: 5945
  • 7 Crouch RD. Polizzi JM. Cleiman RA. Yi J. Romany CA. Tetrahedron Lett. 2002; 43: 7151
  • 8 Sharma GV. M. Srinivas B. Krishna PR. Tetrahedron Lett. 2003; 44: 4689
  • 9 Sharma GV. M. Srinivas B. Krishna PR. Lett. Org. Chem. 2005; 2: 57
  • 10 Glória PM. C. Prabhakar S. Lobo AM. Gomes MJ. S. Tetrahedron Lett. 2003; 44: 8819
  • 11 Hua J. Jiang ZY. Wang YG. Chin. Chem. Lett. 2004; 15: 1430
  • 12 Khan AT. Islam S. Choudhury LH. Ghosh S. Tetrahedron Lett. 2004; 45: 9617
  • 13 Kumar GD. K. Baskaran S. J. Org. Chem. 2005; 70: 4520
  • 14 Bhatt S. Nayak SK. Tetrahedron Lett. 2006; 47: 8395
  • 15 Yang YQ. Cui JR. Zhu LG. Sun YP. Wu Y. Synlett 2006; 1260
  • 16 Bothwell JM. Angeles VV. Carolan JP. Olson ME. Mohan RS. Tetrahedron Lett. 2010; 51: 1056
  • 17 Gopinath P. Nilaya S. Muraleedharan KW. Org. Lett. 2011; 13: 1932
  • 18 González-Calderon D. Benitez-Pubebla LJ. González-González CA. Assad-Hernández S. Fuentes-Benitez A. Cuevas-Yáñez E. Corona-Becerril D. González-Romero C. Tetrahedron Lett. 2013; 54: 5130
  • 19 González-Calderon D. Benitez-Pubebla LJ. González-González CA. Garcia-Eleno MA. Fuentes-Benitez A. Cuevas-Yáñez E. Corona-Becerril D. González-Romero C. Synth. Commun. 2014; 44: 1258
  • 20 Hayashi R. Park JA. Cook GR. Heterocycles 2014; 88: 1477
  • 21 Zhang Q. Kang X. Long L. Zhu L. Chai Y. Synthesis 2015; 47: 55
  • 22 Reddy KT. Sreenivasulu R. Veronica D. Chandrasekhar C. Anitha K. Raju RR. Lett. Org. Chem. 2018; 15: 191
  • 23 Li X.-C. Gong S.-S. Zeng D.-Y. You Y.-H. Sun Q. Tetrahedron Lett. 2016; 57: 1782
  • 24 Wang R. Chen J.-Z. Zheng X.-A. Kong R. Gong S.-S. Sun Q. Carbohydr. Res. 2018; 455: 114
  • 25 Limnios D. Kokotos CG. ACS Catal. 2013; 3: 2239
  • 26 Patschinski P. Zhang C. Zipse H. J. Org. Chem. 2014; 79: 8348
  • 27 Patschinski P. Zipse H. Org. Lett. 2015; 17: 3318
  • 28 Khomutova YA. Smirnov VO. Mayr H. Ioffe SL. J. Org. Chem. 2007; 72: 9134
  • 29 Palanivel A. Chennaiah A. Dubbu S. Mallick A. Vankar YD. Carbohydr. Res. 2017; 437: 43
  • 30 Wu Y. Wang X. Luo YL. Wang J. Jian YJ. Sun HM. Zhang GF. Zhang WQ. Gao ZW. RSC Adv. 2016; 6: 15298