Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2018; 50(20): 3997-4007
DOI: 10.1055/s-0037-1610248
DOI: 10.1055/s-0037-1610248
short review
Synthesis of 1,3-Diols by O-Nucleophile Additions to Activated Alkenes
Financial support was provided by Fondo de Investigaciones de la Facultad de Ciencias de la Universidad de los Andes, convocatoria 2018–2019 para la Financiación de Programas de Investigación ‘use of threonine as chiral auxiliary’.Further Information
Publication History
Received: 17 July 2018
Accepted: 19 July 2018
Publication Date:
30 August 2018 (online)
Abstract
The diastereoselective synthesis of 1,3-diols by addition of oxygen nucleophiles to activated alkenes is presented. This review focuses on homoallylic alcohol substrates that react with a relay compound to form an intermediate oxygen nucleophile, which in turn will lead to a protected 1,3-diol by intramolecular addition to the olefin moiety.
1 Introduction
2 Base Catalysis
3 Organocatalysis
4 Activation with Non-Metallic Electrophiles
5 Activation with Transition Metal Derivatives
6 Conclusions
-
References
- 1 Bode SE. Wolberg M. Müller M. Synthesis 2006; 557
- 2 Kumar P. Tripathi D. Sharma BM. Dwivedi N. Org. Biomol. Chem. 2017; 15: 733
- 3 For a recent review of the application of the oxa-Michael reaction to the synthesis of natural products, see: Hu J. Bian M. Ding H. Tetrahedron Lett. 2016; 57: 5519
- 4 Evans DA. Gauchet-Prunet JA. J. Org. Chem. 1993; 58: 2446
- 5 Prunet J. Ph.D. Thesis . Harvard University; U. S. A.: 1993
- 6a Hung DT. Nerenberg JB. Schreiber SL. J. Am. Chem. Soc. 1996; 118: 11054
- 6b Dineen TA. Roush WR. Org. Lett. 2004; 6: 2043
- 6c Hunter TJ. O’Doherty GA. Org. Lett. 2001; 3: 2777
- 6d Vincent A. Prunet J. Synlett 2006; 2269
- 6e de Lemos E. Porée F.-H. Bourin A. Barbion J. Agouridas E. Lannou M.-I. Commerçon A. Betzer J.-F. Pancrazi A. Ardisson J. Chem.–Eur. J. 2008; 14: 11092
- 6f Palimkar SS. Uenishi J. i. Org. Lett. 2010; 12: 4160
- 6g Albury AM. M. Jennings MP. J. Org. Chem. 2012; 77: 6929
- 6h Bates RW. Lek TG. Synthesis 2014; 46: 1731
- 6i Hunter TJ. Wang Y. Zheng J. O’Doherty GA. Synthesis 2016; 48: 1700
- 7 Grimaud L. Rotulo D. Ros-Perez R. Guitry-Azam L. Prunet J. Tetrahedron Lett. 2002; 43: 7477
- 8 Rotulo-Sims D. Grimaud L. Prunet J. C. R. Chim. 2004; 7: 941
- 9 Rotulo-Sims D. Prunet J. Org. Lett. 2007; 9: 4147
- 10 Aouzal R. Prunet J. Org. Biomol. Chem. 2009; 7: 3594
- 11a Baudin JB. Hareau G. Julia SA. Ruel O. Tetrahedron Lett. 1991; 32: 1175
- 11b Baudin JB. Hareau G. Julia SA. Ruel O. Bull. Soc. Chim. Fr. 1993; 130: 336
- 11c Baudin JB. Hareau G. Julia SA. Ruel O. Bull. Soc. Chim. Fr. 1993; 130: 856
- 11d Charette AB. Berthelette C. St-Martin D. Tetrahedron Lett. 2001; 42: 5149
- 12 Oriez R. Prunet J. Tetrahedron Lett. 2010; 51: 256
- 13 Hoppe I. Hoppe D. Wolff C. Egert E. Herbst R. Angew. Chem. Int. Ed. 1989; 28: 67
- 14 Grimaud L. de Mesmay R. Prunet J. Org. Lett. 2002; 4: 419
- 15 Gamba-Sanchez D. Prunet J. J. Org. Chem. 2010; 75: 3129
- 16 Gamba-Sanchez D. Garzon-Posse F. In Molecular Rearrangements in Organic Synthesis . Rojas C. John Wiley & Sons; Hoboken: 2015: 661
- 17 Evans DA. Nagorny P. Reynolds DJ. McRae KJ. Angew. Chem. Int. Ed. 2007; 46: 541
- 18 Becerra-Figueroa L. Movilla S. Prunet J. Miscione GP. Gamba-Sanchez D. Org. Biomol. Chem. 2018; 16: 1277
- 19 Electron-poor aromatic aldehydes have also been employed with quinol derivatives for the synthesis of protected 1,2-diols, see: Redondo MC. Ribagorda M. Carreño MC. Org. Lett. 2010; 12: 568
- 20 Becerra-Figueroa L. Brun E. Mathieson M. Farrugia LJ. Wilson C. Prunet J. Gamba-Sanchez D. Org. Biomol. Chem. 2017; 15: 301
- 21 Li F. Wang J. Xu M. Zhao X. Zhou X. Zhao W.-X. Liu L. Org. Biomol. Chem. 2016; 14: 3981
- 22 Watanabe H. Machida K. Itoh D. Nagatsuka H. Kitahara T. Chirality 2001; 13: 379
- 23 Tu Y. Wang Z.-X. Frohn M. He M. Yu H. Tang Y. Shi Y. J. Org. Chem. 1998; 63: 8475
- 24a Jefford CW. Rossier J.-C. Kohmoto S. Boukouvalas J. Synthesis 1985; 29
- 24b Jefford CW. Jaggi D. Boukouvalas J. Kohmoto S. J. Am. Chem. Soc. 1983; 105: 6497
- 25a Rubush DM. Rovis T. Synlett 2014; 25: 713
- 25b Rubush DM. Morges MA. Rose BJ. Thamm DH. Rovis T. J. Am. Chem. Soc. 2012; 134: 13554
- 26 Matsumoto A. Asano K. Matsubara S. Chem. Commun. 2015; 51: 11693
- 27 Li DR. Murugan A. Falck JR. J. Am. Chem. Soc. 2008; 130: 46
- 28 Vakulya B. Varga S. Csámpai A. Soós T. Org. Lett. 2005; 7: 1967
- 29 Asano K. Matsubara S. Org. Lett. 2012; 14: 1620
- 30 Okamura T. Asano K. Matsubara S. Chem. Commun. 2012; 48: 5076
- 31 Bartlett PA. Jernstedt KK. J. Am. Chem. Soc. 1977; 99: 4829
- 32 Bartlett PA. Meadows JD. Brown EG. Morimoto A. Jernstedt KK. J. Org. Chem. 1982; 47: 4013
- 33 Cardillo G. Orena M. Porzi G. Sandri S. J. Chem. Soc., Chem. Commun. 1981; 465
- 34 Bongini A. Cardillo G. Orena M. Porzi G. Sandri S. J. Org. Chem. 1982; 47: 4626
- 35 Lipshutz BH. Kozlowski JA. J. Org. Chem. 1984; 49: 1147
- 36 Duan JJ. W. Smith AB. III. J. Org. Chem. 1993; 58: 3703
- 37 Taylor RE. Jin M. Org. Lett. 2003; 5: 4959
- 38 Mohapatra DK. Bhimireddy E. Krishnarao PS. Das PP. Yadav JS. Org. Lett. 2011; 13: 744
- 39 Inoue M. Motomatsu S. Nakada M. Synth. Commun. 2003; 33: 2857
- 40 Vara BA. Struble TJ. Wang W. Dobish MC. Johnston JN. J. Am. Chem. Soc. 2015; 137: 7302
- 41 Stefan E. Taylor RE. In Stereoselective Synthesis of Drugs and Natural Products . Andrushko V. Andrushko N. John Wiley & Sons; Hoboken: 2013: 1115
- 42 Liu K. Taylor RE. Kartika R. Org. Lett. 2006; 8: 5393
- 43 Kartika R. Taylor RE. Angew. Chem. Int. Ed. 2007; 46: 6874
- 44 Kartika R. Frein JD. Taylor RE. J. Org. Chem. 2008; 73: 5592
- 45 Overman LE. Campbell CB. J. Org. Chem. 1974; 39: 1474
- 46 Giese B. Bartmann D. Tetrahedron Lett. 1985; 26: 1197
- 47a Sarraf ST. Leighton JL. Org. Lett. 2000; 2: 403
- 47b Dreher SD. Hornberger KR. Sarraf ST. Leighton JL. Org. Lett. 2000; 2: 3197
- 48a Cossy J. Blanchard N. Meyer C. Org. Lett. 2001; 3: 2567
- 48b Meyer C. Blanchard N. Defosseux M. Cossy J. Acc. Chem. Res. 2003; 36: 766
- 49 Evans PA. Grisin A. Lawler MJ. J. Am. Chem. Soc. 2012; 134: 2856
- 50 Xiong F. Wang H. Yan L. Xu L. Tao Y. Wu Y. Chen F. Org. Biomol. Chem. 2015; 13: 9813
- 51 Hayashi Y. Saitoh T. Arase H. Kawauchi G. Takeda N. Shimasaki Y. Sato I. Chem.–Eur. J. 2018; 24: 4909
- 52 Wang L. Menche D. Angew. Chem. Int. Ed. 2012; 51: 9425
- 53 Goodwin JA. Ballesteros CF. Aponick A. Org. Lett. 2015; 17: 5574
- 54 Cornil J. Gonnard L. Guérinot A. Reymond S. Cossy J. Eur. J. Org. Chem. 2014; 4958
- 55 Herrmann AT. Saito T. Stivala CE. Tom J. Zakarian A. J. Am. Chem. Soc. 2010; 132: 5962
- 56 Tanaka S. Gunasekar R. Tanaka T. Iyoda Y. Suzuki Y. Kitamura M. J. Org. Chem. 2017; 82: 9160
- 57 Spreider PA. Breit B. Org. Lett. 2018; 20: 3286
- 58 Holt D. Gaunt MJ. Angew. Chem. Int. Ed. 2015; 54: 7857
For the formation of trioxanes from hydroperoxides, see:
For the asymmetric formation of trioxanes from hydroperoxides, see: